48 research outputs found
Research progress on the relationship between axonal transport dysfunction in neuronal cells and Alzheimer’s disease
Alzheimer’s disease is known as one of the “top ten killers in the world”. Due to lack of effective therapy at present, early pathological changes have captivated widespread attention. Axonal transport dysfunction has been reported as an early pathological feature of many neurodegenerative diseases. However, multiple factors can cause axonal transport dysfunction. In this article, the relationship between axonal transport dysfunction caused by kinesins, microtubules and mitochondria and Alzheimer’s disease was discussed, aiming to provide new ideas for the prevention and treatment of Alzheimer’s disease by in-depth study on axonal transport mechanism of neure
Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta
The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD
A Meta-Analysis of the Bacterial and Archaeal Diversity Observed in Wetland Soils
This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-analysis approach. All available 16S rRNA gene sequences recovered from wetlands in public databases were retrieved. In November 2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned into 6383 operational taxonomic units (OTUs 0.03), representing 31 known bacterial phyla, predominant with Proteobacteria (2791 OTUs), Bacteroidetes (868 OTUs), Acidobacteria (731 OTUs), Firmicutes (540 OTUs), and Actinobacteria (418 OTUs). The genus Flavobacterium (11.6% of bacterial sequences) was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira, and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating archaeal genera were Fervidicoccus and Methanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83% of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding the microbial diversity involved in worldwide wetlands.This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-analysis approach. All available 16S rRNA gene sequences recovered from wetlands in public databases were retrieved. In November 2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned into 6383 operational taxonomic units (OTUs 0.03), representing 31 known bacterial phyla, predominant with Proteobacteria (2791 OTUs), Bacteroidetes (868 OTUs), Acidobacteria (731 OTUs), Firmicutes (540 OTUs), and Actinobacteria (418 OTUs). The genus Flavobacterium (11.6% of bacterial sequences) was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira, and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating archaeal genera were Fervidicoccus and Methanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83% of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding the microbial diversity involved in worldwide wetlands
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain
In order to explore the effects of subsoiling tillage measures on the construction of soil cultivated horizon and the yield and water use efficiency of winter wheat in the North China Plain, three tillage methods, including no tillage (PZ), rotary tillage (PR), and subsoiling (PS), combined with straw returning measures were implemented in the winter wheat season in Xinxiang, Henan Province from 2016 to 2018. The effects of tillage measures on the improvement of cultivated land quality and the water saving and yield increase of winter wheat were investigated. The results showed that compared with no-tillage treatment, subsoiling significantly reduced soil bulk density by 8.88% and increased soil porosity by 13.04% in 20–40 cm soil layer; significantly reduced soil compaction by 56.96% in 0–40 cm soil layer; subsoiling combined with straw returning significantly increased soil organic carbon content in plough layer of winter wheat, whereas rotary tillage decreased soil organic carbon content. Subsoiling is more conducive to soil moisture movement to the deep layer after irrigation or rainfall, and the water consumption of subsoiling is the largest in the whole growth period of winter wheat. Subsoiling could better coordinate the relationship between water consumption and yield, which increased yield by 34.48–38.10% and water use efficiency by 19.57–21.96% compared with no-tillage treatment, respectively. Therefore, subsoiling before sowing combined with straw returning was beneficial to the reasonable construction of soil cultivated horizon, and significantly improved the yield and water use efficiency of winter wheat under the climatic conditions in the North China Plain