104 research outputs found
Crossover between Weak Antilocalization and Weak Localization of Bulk States in Ultrathin Bi2Se3 Films
We report transport studies on the 5 nm thick Bi2Se3 topological insulator
films which are grown via molecular beam epitaxy technique. The angle-resolved
photoemission spectroscopy data show that the Fermi level of the system lies in
the bulk conduction band above the Dirac point, suggesting important
contribution of bulk states to the transport results. In particular, the
crossover from weak antilocalization to weak localization in the bulk states is
observed in the parallel magnetic field measurements up to 50 Tesla. The
measured magneto-resistance exhibits interesting anisotropy with respect to the
orientation of B// and I, signifying intrinsic spin-orbit coupling in the
Bi2Se3 films. Our work directly shows the crossover of quantum interference
effect in the bulk states from weak antilocalization to weak localization. It
presents an important step toward a better understanding of the existing
three-dimensional topological insulators and the potential applications of
nano-scale topological insulator devices
Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks
The volatility of wind power generations could significantly challenge the economic and secure operation of combined electricity and heat networks. To tackle this challenge, this paper proposes a framework of optimal dispatch with distributed electric heating storage based on a correlation-based long short-term memory prediction model. The prediction model of distributed electric heating storage is developed to model its behavior characteristics which are obtained by the autocorrelation and correlation analysis with external factors including weather and time-of-use price. An optimal dispatch model of combined electricity and heat networks is then formulated and resolved by a constraint reduction technique with clustering and classification. Our method is verified through numerous simulations. The results show that, compared with the state-of-the-art techniques of support vector machine and recurrent neural networks, the mean absolute percentage error with the proposed correlation-based long short-term memory can be reduced by 1.009 and 0.481 respectively. Compared with conventional method, the peak wind power curtailment with dispatching distributed electric heating storage is reduced by nearly 30% and 50% in two cases respectively
Efficacy and safety of triazavirin therapy for coronavirus disease 2019 : A pilot randomized controlled trial
Acknowledgements: We are deeply grateful to the front-line clinicians who participated in the study while directly fighting the epidemic. This study was supported by the Chinese Academy of Engineering Projects for COVID-19 (2020-KYGG-01-04) and Heilongjiang Province Urgent Project-6 for COVID-19. Data and safety monitoring board members of this trial included Kang Li, Yong Zhang, Songjiang Liu, and Yaohui Shi.Peer reviewedPublisher PD
Direct observation of high temperature superconductivity in one-unit-cell FeSe films
Heterostructure based interface engineering has been proved an effective
method for finding new superconducting systems and raising superconductivity
transition temperature (TC). In previous work on one unit-cell (UC) thick FeSe
films on SrTiO3 (STO) substrate, a superconducting-like energy gap as large as
20 meV, was revealed by in situ scanning tunneling microscopy/spectroscopy
(STM/STS). Angle resolved photoemission spectroscopy (ARPES) further revealed a
nearly isotropic gap of above 15 meV, which closes at a temperature of ~ 65 K.
If this transition is indeed the superconducting transition, then the 1-UC FeSe
represents the thinnest high TC superconductor discovered so far. However, up
to date direct transport measurement of the 1-UC FeSe films has not been
reported, mainly because growth of large scale 1-UC FeSe films is challenging
and the 1-UC FeSe films are too thin to survive in atmosphere. In this work, we
successfully prepared 1-UC FeSe films on insulating STO substrates with
non-superconducting FeTe protection layers. By direct transport and magnetic
measurements, we provide definitive evidence for high temperature
superconductivity in the 1-UC FeSe films with an onset TC above 40 K and a
extremely large critical current density JC ~ 1.7*106 A/cm2 at 2 K. Our work
may pave the way to enhancing and tailoring superconductivity by interface
engineering
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Characterization of Highly Dispersed Rod- and Particle-Shaped CuFe<sub>19</sub>O<sub>x</sub> Catalysts and Their Shape Effects on WGS
Highly dispersed CuFe19Ox catalysts with different shapes were prepared and further characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), and in-situ XRD. XRD and TEM results showed that the synthesized CuFe19Ox nanoparticles consisted of CuO and Fe2O3, while CuFe19Ox nanorods consisted of CuFe2O4 and Fe2O3. The reduction properties of CuFe19Ox samples were finely studied by H2-TPR, and the phase composition was identified by in-situ XPS, HR-TEM, and surface TPR (s-TPR). In-situ X-ray photoelectroscopy (XPS) indicated that the metallic Cu and Fe3O4 were the main species after reduction. Moreover, s-TPR studies showed that the reduction performance of copper was significantly affected by the shapes of the Fe3O4 supports. Low-temperature water gas shift (LT-WGS) was chosen to characterize the Cu species on the surface. It was found that reduced CuFe19Ox nanorods had no activity. On the contrary, reduced CuFe19Ox particles showed higher initial WGS activity, where the active Cu0 should originate from the reduction of Cu2O at lower temperatures, as confirmed by the s-TPR profiles
The association of polyunsaturated fatty acids and asthma: a cross-sectional study
Abstract Background To examine the relationships between polyunsaturated fatty acids (PUFAs) dietary intake and asthma in children. Methods In this cross-sectional study, a total of 14,727 participants from the United States National Health and Nutrition Examination Survey (NHANES) database in 1999–2018 were included, and the baseline characteristics of all participants were gathered. The description analysis was used to explore the possible covariates. Weighted multivariate logistic regression models were adopted to assessed the association between PUFAs dietary intake and asthma in children. In addition, we also performed subgroup analysis based on gender, age, and maternal smoking during pregnancy to investigate this relationship. Results The prevalence of asthma approximately was 15.38% in the present study. The result of weighted multivariate logistic regression indicated that, docosahexaenoic [weighted odds ratio (OR) = 0.37, 95% confidence interval (CI) 0.19–0.74], total n − 3 PUFAs (weighted OR = 0.63, 95%CI 0.43–0.91), and eicosapentaenoic (weighted OR = 0.35, 95%CI 0.13–0.95) dietary intake were negatively associated with asthma in children. The subgroup analysis described that when children were male (weighted OR = 0.28, 95%CI 0.10–0.84), or were 5–7 years (weighted OR = 0.04, 95%CI 0.01–0.37), were 7–12 years (weighted OR = 0.46, 95%CI 0.24–0.90), or their maternal smoking during pregnancy (weighted OR = 0.16, 95%CI 0.03–0.90), docosahexaenoic dietary intake was negatively related to childhood asthma. Conclusion Docosahexaenoic dietary intake was negatively associated with the asthma in children, especially if children were male, or were 5–12 years, or their maternal smoking during pregnancy
- …