35 research outputs found

    Assessment of the Impacts of Land Use Changes on Nonpoint Source Pollution Inputs Upstream of the Three Gorges Reservoir

    Get PDF
    In recent years, land use upstream of the Three Gorges Reservoir (TGR) has changed significantly because of the TGR project. In this study, the Soil and Water Assessment Tool (SWAT) model was examined for its ability to assess relationships between land use changes and nonpoint pollutant indexes upstream of the TGR. Results indicated that the SWAT model, calibrated with the adjusted parameters, could successfully reproduce the nonpoint indexes at the water quality monitoring sites in the two rivers. The different land use change types were shown to be sensitive to nonpoint pollutants in the study area. The land use change type from upland to water was the strongest influence on changes in total nitrogen and total phosphorus. An empirical regression equation between nonpoint indexes and different land use change types was developed for the study area by partial least squares regression (PLSR) as follows: Y=b0+∑i=1mbiXi. This regression equation was useful for evaluating the influence of land use change types on changes in nonpoint pollutants over a long time period. The results from this study may be useful for the TGR management and may help to reduce nonpoint pollutant loads into downstream water bodies

    Spatiotemporal variation of habitat quality and its response to fractional vegetation cover change and human disturbance in the Loess Plateau

    Get PDF
    It is of great practical significance to regional ecological conservation and restoration to explore the spatiotemporal variation characteristics of habitat quality in the ecologically fragile Loess Plateau. This study firstly explored the habitat quality in the Loess Plateau during 2000-2020 with the Integrated Valuation of Ecosystem Services and Trade-offs model. Then this study revealed the response characteristics of habitat quality to the fractional vegetation cover (FVC) change and human disturbance with the geographically weighted regression (GWR) model. Results showed habitat quality tended to improve in 51.16% of the study area, and area of high or very high habitat quality increased by 1.78%. Besides, FVC showed dominantly significant increase (62.42%) and high stability (69.66%) in the study area, and human disturbance increased remarkably in 18.11% of the study area but maintained the same level in 91.83% of the study area. Additionally, areas with positive correlation between habitat quality change and FVC and between habitat quality change and human disturbance change accounted for 52.56% and 37.38% of the study area, respectively, indicating FVC played dominant role in affecting the regional habitat quality variation. This study can provide important decision support information for the future ecological conservation of the Loess Plateau

    Variation of Net Carbon Emissions from Land Use Change in the Beijing-Tianjin-Hebei Region during 1990–2020

    No full text
    Global increasing carbon emissions have triggered a series of environmental problems and greatly affected the production and living of human beings. This study estimated carbon emissions from land use change in the Beijing-Tianjin-Hebei region during 1990–2020 with the carbon emission model and explored major influencing factors of carbon emissions with the Logarithmic Mean Divisia Index (LMDI) model. The results suggested that the cropland decreased most significantly, while the built-up area increased significantly due to accelerated urbanization. The total carbon emissions in the study area increased remarkably from 112.86 million tons in 1990 to 525.30 million tons in 2020, and the built-up area was the main carbon source, of which the carbon emissions increased by 370.37%. Forest land accounted for 83.58–89.56% of the total carbon absorption but still failed to offset the carbon emission of the built-up area. Carbon emissions were influenced by various factors, and the results of this study suggested that the gross domestic product (GDP) per capita contributed most to the increase of carbon emissions in the study area, resulting in a cumulative increase of carbon emissions by 9.48 million tons, followed by the land use structure, carbon emission intensity per unit of land, and population size. By contrast, the land use intensity per unit of GDP had a restraining effect on carbon emissions, making the cumulative carbon emissions decrease by 103.26 million tons. This study accurately revealed the variation of net carbon emissions from land use change and the effects of influencing factors of carbon emissions from land use change in the Beijing-Tianjin-Hebei region, which can provide a firm scientific basis for improving the regional land use planning and for promoting the low-carbon economic development of the Beijing-Tianjin-Hebei region

    Variation of Net Carbon Emissions from Land Use Change in the Beijing-Tianjin-Hebei Region during 1990–2020

    No full text
    Global increasing carbon emissions have triggered a series of environmental problems and greatly affected the production and living of human beings. This study estimated carbon emissions from land use change in the Beijing-Tianjin-Hebei region during 1990–2020 with the carbon emission model and explored major influencing factors of carbon emissions with the Logarithmic Mean Divisia Index (LMDI) model. The results suggested that the cropland decreased most significantly, while the built-up area increased significantly due to accelerated urbanization. The total carbon emissions in the study area increased remarkably from 112.86 million tons in 1990 to 525.30 million tons in 2020, and the built-up area was the main carbon source, of which the carbon emissions increased by 370.37%. Forest land accounted for 83.58–89.56% of the total carbon absorption but still failed to offset the carbon emission of the built-up area. Carbon emissions were influenced by various factors, and the results of this study suggested that the gross domestic product (GDP) per capita contributed most to the increase of carbon emissions in the study area, resulting in a cumulative increase of carbon emissions by 9.48 million tons, followed by the land use structure, carbon emission intensity per unit of land, and population size. By contrast, the land use intensity per unit of GDP had a restraining effect on carbon emissions, making the cumulative carbon emissions decrease by 103.26 million tons. This study accurately revealed the variation of net carbon emissions from land use change and the effects of influencing factors of carbon emissions from land use change in the Beijing-Tianjin-Hebei region, which can provide a firm scientific basis for improving the regional land use planning and for promoting the low-carbon economic development of the Beijing-Tianjin-Hebei region

    Thermal Environment Effects of Built-Up Land Expansion in Shijiazhuang

    No full text
    Exploring the thermal environment effects of built-up land expansion can lay a firm foundation for urban planning and design. This study revealed the spatiotemporal dynamic characteristics of built-up land and heat island center points in Shijiazhuang using land-use/land-cover data and land surface temperature (LST) products from 1996 to 2019, and the response mechanism between the percentage of built-up land (PLAND) and LST with the grid sampling method and statistical analysis. Results indicated that heat islands are mainly clustered in the downtown, built-up areas of counties and the Hutuo River Basin. The spatiotemporal shift direction of the center point of the urban heat island (UHI) and built-up land in the whole study area varied due to the eco-environmental transformation of the Hutuo River Basin. In areas far from the Hutuo River Basin, the center points of UHI and built-up land were shifted in a similar direction. There is a remarkable linear correlation between the PLAND and LST, the correlation coefficient of which was higher than 0.7 during the study period. Areas with PLAND > 60% are urban regions with stronger heat island effects, and areas with PLAND < 55% are villages and towns where the temperature raised more slowly

    Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters

    No full text
    The upstream regions of the Three Gorges Reservoir (TGR) have undergone significant changes in land use during recent years, and these changes have strongly influenced runoff generation downstream. In this study, the relationships between land use changes and corresponding hydrological responses in the Dong and Puli River basins in the upstream region of the TGR were quantified using the runoff coefficient. Empirical regression equations between the runoff coefficient and the percentage of land use types were developed for the study area using partial least squares regression (PLSR). The Soil and Water Assessment Tool was used to simulate the runoff generation processes in the two basins, and land use maps developed using Landsat Thematic Mapper images from 2000, 2005, and 2010 were compared to extract information on changes in land use. The results showed that the total area of forest and pasture decreased over the 10-year study period, while paddy fields and upland increased in both basins. These land use changes dramatically affected hydrological processes. Evapotranspiration decreased by 2.13% and 2.41% between 2000 and 2010 in the Dong and Puli River basins, respectively, whereas quickflow, infiltration, and baseflow increased to varying degrees. The PLSR modeling results showed that upland had a negative effect on the runoff coefficient and was the most influential land use type in the study area. In contrast, a positive effect of forest on runoff generation was found in most of the regression models. Copyright (c) 2012 John Wiley & Sons, Ltd

    Estimation of the Rational Range of Ecological Compensation to Address Land Degradation in the Poverty Belt around Beijing and Tianjin, China

    No full text
    Ecological compensation provides innovative ecological solutions for addressing land degradation and guaranteeing the sustainable provision of essential ecosystem services. This study estimated the ecosystem service value and the opportunity cost of land use in the Poverty Belt of China—around Beijing and Tianjin—from 1980 to 2015 on the small watershed scale, and thereafter estimated the rational range of ecological compensation in this ecologically fragile zone. Results showed that the total ecosystem service value in the study area gradually decreased from CNY 54.198 billion in 1980 to CNY 53.912 billion in 2015. Moreover, the annual total ecological compensation of the whole study area ranged between CNY 2.67 billion and 2.83 billion. More specifically, areas with higher ecological compensation standards are mainly concentrated in the northwestern and northern parts of the study area, with a lower economic development level, while areas with lower ecological compensation standards are mainly located in areas with a relatively high level of economic development, e.g., the southern and southeastern parts of the study area. These results can provide valuable decision-support information for the design and optimization of ecological compensation to address land degradation along with rapid urbanization in the Beijing–Tianjin–Hebei region

    Estimation of the Rational Range of Ecological Compensation to Address Land Degradation in the Poverty Belt around Beijing and Tianjin, China

    No full text
    Ecological compensation provides innovative ecological solutions for addressing land degradation and guaranteeing the sustainable provision of essential ecosystem services. This study estimated the ecosystem service value and the opportunity cost of land use in the Poverty Belt of China—around Beijing and Tianjin—from 1980 to 2015 on the small watershed scale, and thereafter estimated the rational range of ecological compensation in this ecologically fragile zone. Results showed that the total ecosystem service value in the study area gradually decreased from CNY 54.198 billion in 1980 to CNY 53.912 billion in 2015. Moreover, the annual total ecological compensation of the whole study area ranged between CNY 2.67 billion and 2.83 billion. More specifically, areas with higher ecological compensation standards are mainly concentrated in the northwestern and northern parts of the study area, with a lower economic development level, while areas with lower ecological compensation standards are mainly located in areas with a relatively high level of economic development, e.g., the southern and southeastern parts of the study area. These results can provide valuable decision-support information for the design and optimization of ecological compensation to address land degradation along with rapid urbanization in the Beijing–Tianjin–Hebei region

    Differentiation of Carbon Sink Enhancement Potential in the Beijing–Tianjin–Hebei Region of China

    No full text
    Carbon sink enhancement is of great significance to achieving carbon peak and carbon neutrality. This study firstly estimated the carbon sink in the Beijing–Tianjin–Hebei Region using the carbon absorption coefficient method. Then, this study explored the differentiation of carbon sink enhancement potential with a carbon sink–economic carrying capacity index matrix based on carbon sink carrying capacity and economic carrying capacity under the baseline scenario and target scenario of land use. The results suggested there was a remarkable differentiation in total carbon sink in the study area, reaching 2,056,400 and 1,528,300 tons in Chengde and Zhangjiakou and being below 500,000 tons in Langfang and Hengshui, while carbon sink per unit land area reached 0.66 ton/ha in Qinhuangdao and only 0.28 t/ha in Tianjin under the baseline scenario. Increasing area and optimizing spatial distribution of arable land, garden land, and forest, which made the greatest contribution to total carbon sinks, is an important way of enhancing regional carbon sinks. A hypothetical benchmark city can be constructed according to Qinhuangdao and Beijing, in comparison with which there is potential for carbon sink enhancement by improving carbon sink capacity in Beijing, promoting economic carrying capacity in Qinhuangdao, and improving both in the other cities in the study area

    Long time-series variation of crop yield under drought stress and drought vulnerability curves in Songnen Plain, Northeast China

    No full text
    It is of practical significance to reveal the long-term characteristics of drought and its impacts on crop yield in Songnen Plain, an important commodity grain base in Northeast China. This study firstly explored the long time-series variation of Modified Soil Water Deficit Index (MSWDI) and crop yield at multiple sites in Songnen Plain during 1960–2014 based on numerical simulation with the World Food Studies (WOFOST) model. This study then revealed the mutation of the drought and crop yield with three mutation point test methods, and thereafter explored their relationship between the drought and crop yield with the cross wavelet transform (XWT) and drought vulnerability curve. Results suggested the precipitation was at the lowest level in the 1970 s, which significantly increased in the 1980 s and thereafter exhibited a slow declining trend. Mutation points of drought conditions occurred at multiple stations in 1983, and the crop yields also showed obvious mutation in 1983 or 1984 at two stations. Besides, the drought and crop yield had significant 2–4 year resonance cycles during 1978–1980 at four stations. In particular, periods with high correlation between these two variables were generally years prone to abrupt changes. In addition, determination coefficients of the drought vulnerability curves based on the linear function, cubic curve function and hyperbolic tangent function reached 0.55, 0.65, and 0.64, respectively, suggesting the cubic curve function performed best. The drought vulnerability curve based on the cubic curve function suggested the crop yield loss showed a firstly decreasing and then increasing trend, which may be related to the compensation mechanism of crops. Overall, combination of the mechanistic drought index and crop models provides an effective way to reveal impacts of drought stress on crop yield and offer support information for coping with drought
    corecore