208 research outputs found

    Study on the influence mechanism and level measurement of agricultural green development—A case study of China

    Get PDF
    Taking China as an example, this paper analyzes the impact mechanism of agricultural green development and constructs a measurement system of agricultural green development level. The system includes seven subsystems (ensuring food security, optimizing agricultural structure, improving market mechanism, innovation-driven development, building ecological civilization, inheriting traditional culture, and benefiting the people) and 55 measurement indicators. Empirical research was carried out using entropy method and gray correlation to measure the level of green development of China's agriculture, analyze its spatial distribution law, and divide it into three levels according to the development level, then analyze the regional characteristics of each grade. The research shows that the overall level of agricultural green development in China is relatively low, and the constraints are obvious. It is easy to ignore the value of agricultural green development, and the phenomenon of non-green development still exists. Therefore, we must attach great importance to the green development of agriculture, change agricultural production from the pursuit of quantity to the pursuit of quality in the past, formulate an effective path to promote the comprehensive level of agricultural green development in the whole ecological chain, and build a collaborative research institution and information monitoring platform for agricultural green development

    The Responses of the Quantitative Characteristics of a Ramet Population of the Ephemeroid Rhizomatous Sedge Carex physodes

    Get PDF
    In this study, the soil moisture content was measured, and the quantitative characteristics of this sedge species were compared. The phenotypic plasticity of each parameter and the linear regression relationships were analyzed. The results showed that the soil moisture content was significantly affected by location, soil depth, and sampling date. The aboveground biomass, underground biomass, biomass density, and population density at the peak were significantly higher than elsewhere on the dune. However, the morphological plasticity index of the quantitative characteristics was higher at the base and middle of the dune. When the soil moisture content decreased, the underground biomass and ramet biomass density increased. The aboveground and underground biomasses were strongly negatively correlated, but the ramet height and aboveground biomass were strongly positively correlated. These results indicated that the soil water content significantly affected the clonal growth of C. physodes. The responsiveness of C. physodes may be adaptive when the soil resource supply is low. The strong morphological plasticity of the species appears to be ecologically important for the maintenance and dominance of this species in the dune habitat

    Seed Dormancy-Breaking in a Cold Desert Shrub in Relation to Sand Temperature and Moisture

    Get PDF
    Seasonal periodicity of seed germination and its relationship to seasonal changes in temperature and soil moisture have been well studied in seeds of species with physiological dormancy. However, relatively little information is available on the role of these environmental factors in controlling germination of seeds with physical dormancy (PY). Our primary aim was to determine if seeds of the cold desert sand dune semi-shrub Eremosparton songoricum exhibits seasonal periodicity of seed germination and the relationship between seed dormancy break and soil temperature and moisture. In the laboratory, seeds incubated on dry, wet, wet-dry and dry-wet sand were exposed to a 1-year sequence of temperature regimes simulating those in the field. In the field, seeds were buried at different depths on a sand dune, and germination of periodically exhumed seeds was tested at five temperature regimes during a 2-year period. In the one-year sequence of simulated natural temperature regimes, breaking of PY was more effective under constantly wet than under constantly dry conditions, and germination percentage was significantly higher under dry-wet than under wet-dry conditions. Seeds buried in the field exhibited a distinct peak of germination in spring and little or no germination in other seasons. The final (two-year) monthly cumulative germination percentage differed among burial depths and temperature, and it was highest (47%) in seeds buried at 3 cm and tested at 25/10 °C. A seed cohort of E. songoricum likely exhibits a long-term annual periodicity of spring germination in the field, and dormancy break appears to be driven by low (winter) temperatures and relatively high sand moisture content. To our knowledge this is the first study to document seasonal periodicity in seed germination in a cold desert species with PY and to identify the mechanism (at the whole-seed level) of its occurrence

    Effects of Increased Precipitation on the Life History of Spring- and Autumn-Germinated Plants of the Cold Desert Annual \u3cem\u3eErodium oxyrhynchum\u3c/em\u3e (Geraniaceae)

    Get PDF
    Future increased precipitation in cold desert ecosystems may impact annual/ephemeral plant species that germinate in both spring and autumn. Our primary aim was to compare the life history characteristics of plants from spring-germinating (SG) and autumn-germinating (AG) seeds of Erodium oxyrhynchum. Plants in field plots with simulated increases in precipitation of 0, 30 and 50 % in spring and summer were monitored to determine seedling survival, phenology, plant size, seed production and biomass accumulation and allocation. Germination characteristics were determined in the laboratory for seeds produced by plants in all increased precipitation treatments. Increased precipitation in spring significantly improved survival of seedlings from SG and AG seeds, but survival was less for AG than SG. An increase in precipitation increased the number of seeds per plant for both SG and AG, but AG produced more seeds per plant than SG. With increased precipitation, percentage of dormant seeds from SG increased significantly, while that of AG decreased slightly. Our study suggests that with increased spring and summer rainfall AG will produce an increased number of nondormant seeds that could germinate in autumn and SG an increased number of dormant seeds that become part of the soil seed bank. However, ability of some seeds to germinate in autumn and others in spring will be maintained as long as soil moisture is limited in autumn

    Is the Life History Flexibility of Cold Desert Annuals Broad Enough to Cope with Predicted Climate Change? The Case of \u3ci\u3eErodium oxyrhinchum\u3c/i\u3e in Central Asia

    Get PDF
    Interannual seasonal variability in precipitation may strongly affect the life history and growth of desert annual plants. We compared the effects of dry and wet springs and dry and wet autumns on growth and F2 seed dormancy of plants from spring (SG)- and autumn (AG)-germinated seeds of the cold desert annual Erodium oxyrhinchum. Vegetative and reproductive growth and F2 seed dormancy and germination were monitored from September 2016 to November 2020 in the sandy Gurbantunggut Desert in NW China in Central Asia. Dry autumns decreased the density of AG plants, and dry springs decreased the density of SG plants and growth of SG and AG plants. In dry springs, SG plants were more sensitive to precipitation than AG plants, while in wet springs SG and AG plants had similar responses to precipitation. During growth in both dry and wet springs, most morphological characters of SG and AG plants initially increased rapidly in size/number and then plateaued or decreased, except for SG plants in dry springs. In dry springs, most morphological characters of AG plants were larger or more numerous than those of SG plants, and they were larger/more numerous for SG plants in wet than in dry springs. The percentage biomass allocated to reproduction in SG plants was slightly higher in a wet than in a dry spring. A much higher proportion of dormant seeds was produced by AG plants in a wet spring than in a dry spring. Projected changes in precipitation due to climate change in NW China are not likely to have much of an effect on the biology of this common desert annual plant

    Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert

    Get PDF
    Precipitation change and nitrogen deposition are not only hot topics of current global change but also the main environmental factors affecting plant growth in desert ecosystems. Thus, we performed an experiment of increased precipitation, nitrogen, and precipitation plus nitrogen on the ephemeral annual species Nepeta micrantha and Eremopyrum distans in the Gurbantunggut Desert. We aimed to determine the life history responses of N. micrantha and E. distans to environment changes, and the germination percentage of the offspring (seeds) was also tested in the laboratory. The results showed that increased nitrogen and precipitation plus nitrogen increased the growth of both plant species, whereas increased precipitation inhibited the growth of N. micrantha but increased the growth of E. distans. This differential response of these two species to precipitation and nitrogen also affected the germination of their offspring. In response to increased nitrogen and precipitation plus nitrogen, the germination percentage of the offspring produced by two species decreased in conjunction with the plants exhibiting high reproduction, which may prevent overcrowding during the following year; however, the N. micrantha plants produced more nondormant offspring in conjunction with low reproduction under relatively greater amounts of precipitation, and N. micrantha offspring could occupy their habitat via rapid germination in suitable environments. Therefore, with increased precipitation and nitrogen deposition, these differences in offspring dormancy may affect their ecological niche in the community

    Optical Flow Sensor/INS/Magnetometer Integrated Navigation System for MAV in GPS-Denied Environment

    Get PDF
    The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision

    Expression mapping of GREM1 and functional contribution of its-secreting-cells in the brain using transgenic mouse models

    Get PDF
    Gremlin 1 (Grem1) is a secreted protein that antagonizes bone morphogenetic proteins (BMPs). While abnormal Grem1 expression has been reported to cause behavioral defects in postpartum mice, the spatial and cellular distribution of GREM1 in the brain and the influence of the Grem1-secreating cells on brain function and behavior remain unclear. To address this, we designed a genetic cassette incorporating a 3 × Flag-TeV-HA-T2A-tdTomato sequence, resulting in the creation of a novel Grem1Tag mouse model, expressing an epitope tag (3 × Flag-TeV-HA-T2A) followed by a fluorescent reporter (tdTomato) under the control of the endogenous Grem1 promoter. This design facilitated precise tracking of the cell origin and distribution of GREM1 in the brain using tdTomato and Flag (or HA) markers, respectively. We confirmed that the Grem1Tag mouse exhibited normal motor, cognitive, and social behaviors at postnatal 60 days (P60), compared with C57BL/6 J controls. Through immunofluorescence staining, we comprehensively mapped the distribution of Grem1-secreting cells across the central nervous system. Pervasive Grem1 expression was observed in the cerebral cortex (Cx), medulla, pons, and cerebellum, with the highest levels in the Cx region. Notably, within the Cx, GREM1 was predominantly secreted by excitatory neurons, particularly those expressing calcium/calmodulin-dependent protein kinase II alpha (Camk2a), while inhibitory neurons (parvalbumin-positive, PV+) and glial cells (oligodendrocytes, astrocytes, and microglia) showed little or no Grem1 expression. To delineate the functional significance of Grem1-secreting cells, a selective ablation at P42 using a diphtheria toxin A (DTA) system resulted in increased anxiety-like behavior and impaired memory in mice. Altogether, our study harnessing the Grem1Tag mouse model reveals the spatial and cellular localization of GREM1 in the mouse brain, shedding light on the involvement of Grem1-secreting cell in modulating brain function and behavior. Our Grem1Tag mouse serves as a valuable tool for further exploring the precise role of Grem1 in brain development and disease

    A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks

    Get PDF
    The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security
    • …
    corecore