9,875 research outputs found

    Transverse profile expansion and homogenization at target for the injector Scheme-I test stand of China-ADS

    Full text link
    For the injector Scheme-I test stand of the China-ADS, a beam with the maximum power of 100 kW will be produced and transported to the beam dump. At the beam dump, the beam power will be converted to thermal load and brought away by the cooling water. Two measures are taken to deal with the huge power density at the target. One is to enlarge the contact area between the beam and the target, and this is to be accomplished by expanding the beam profile at the target and using two copper plates each having a 20o inclination angle relative to the beam direction. The other is to produce more homogenous beam profile at the target to minimize the maximum power density. Here the beam dump line is designed to meet the requirement of beam expansion and homogenization, and the step-like field magnets are employed for the beam spot homogenization. The simulations results including space charge effects and errors show that the beam line can meet the requirements very well at the three different energies (3.2 MeV, 5 MeV and 10 MeV). In the meantime, the alternative beam design using standard multipole magnets is also presented.Comment: 5 pages, 6 table

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Semi-leptonic and Non-leptonic BB meson decays to charmed mesons

    Full text link
    We study the semi-leptonic and non-leptonic BB weak decays which are governed by the BD()B\rightarrow D^{(*)} transitions. The branching ratios, CP asymmetries (CPA) and polarization fractions (FA) of non-leptonic decays are investigated in the factorization approximation. The BD()B\rightarrow D^{(*)} form factors are estimated in the Salpeter method. Our estimation on branching ratios generally agree with the existent experimental data. For CPA and polarizations, comparisons among the FA results, the perturbative QCD predictions and experimental data are made.Comment: 8 pages, 1 figures, 5 table

    Experimental Quantum Teleportation and Multi-Photon Entanglement via Interfering Narrowband Photon Sources

    Full text link
    In this letter, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high demanding synchronization technique in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multi-photon source will have applications in some advanced quantum communication protocols and linear optical quantum computation
    corecore