3,407 research outputs found
Changes in lymphocyte subsets in patients with Guillain-Barré syndrome treated with immunoglobulin
BACKGROUND: Guillain-Barré syndrome (GBS) is an autoimmune condition characterized by peripheral neuropathy. The pathogenesis of GBS is not fully understood, and the mechanism of how intravenous immunoglobulin (IVIG) cures GBS is ambiguous. Herein, we investigated lymphocyte subsets in patients with two major subtypes of GBS (acute inflammatory demyelinating polyneuropathy, AIDP, and acute motor axonal neuropathy, AMAN) before and after treatment with IVIG, and explored the possible mechanism of IVIG action. METHODS: Sixty-four patients with GBS were selected for our study and divided into two groups: AIDP (n = 38) and AMAN (n = 26). Thirty healthy individuals were chosen as the control group. Relative counts of peripheral blood T and B lymphocyte subsets were detected by flow cytometry analysis. RESULTS: In the AIDP group, the percentage of CD4(+)CD45RO(+) T cells was significantly higher, while the percentage of CD4(+)CD45RA(+) T cells was notably lower, than in the control group. After treatment with IVIG, the ratio of CD4(+)/CD8(+) T cells and the percentage of CD4(+)CD45RA(+) T cells increased, while the percentages of CD8(+) T cells and CD4(+)CD45RO(+) T cells decreased significantly, along with the number of CD19(+) B cells. However, there were not such obvious changes in the AMAN group. The Hughes scores were significantly lower in both the AIDP and AMAN groups following treatment with IVIG, but the changes in Hughes scores showed no significant difference between the two groups. CONCLUSIONS: This study suggested that the changes in T and B-lymphocyte subsets, especially in CD4(+)T-lymphocyte subsets, might play an important role in the pathogenesis of AIDP, and in the mechanism of IVIG action against AIDP
Serum γ-glutamyltransferase and uric acid levels are associated with impaired fasting glucose in adults from Inner Mongolia, China
BACKGROUND: Serum γ-glutamyltransferase (GGT) and uric acid (UA) levels are elevated in patients with diabetes or cardiovascular disease. Prediabetes, characterized by impaired glucose tolerance, is an important risk factor for overt diabetes as well as cardiovascular disease. Therefore, the aim of this study was to explore the relationship between GGT, UA and prediabetes in a Chinese population, and provide a scientific basis for the early prevention and treatment of diabetes. METHODS: We performed a cross-sectional population-based study in a cohort of 2694 subjects (1211 men and 1483 women, aged 35–86 years). Questionnaires and physical examinations were performed using standardized procedures. Fasting blood was collected to measure glucose and other biochemical parameters. The subjects were divided into two groups with either normal fasting glucose (NFG) or impaired fasting glucose (IFG), according to international diagnostic criteria. Logistic regression analysis was performed to estimate odds ratios (OR) and 95% confidence intervals. RESULTS: Compared with the NFG group, the IFG group had significantly higher blood pressure but lower high-density lipoprotein–cholesterol in women. Body mass index, waist circumference, triglyceride, glucose, GGT, and UA levels were significantly higher in males and females in the IFG group than those in the NFG group. Logistic regression analysis revealed that the OR for prediabetes increased with increasing serum GGT quartiles and UA quartiles. GGT and UA were positively associated with prediabetes in men and women, independent of age, ethnicity, smoking, alcohol consumption, blood pressure, physical labor, and other confounders. CONCLUSIONS: We found that serum GGT and UA levels were positively associated with prediabetes in men and women living in areas inhabited by Chinese ethnic minorities. As elevated GGT and UA levels were associated with significantly increased risk of prediabetes, they may be used as sensitive biological markers of prediabetes
Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces
BACKGROUND: Hyperuricemia (HUA) is a potential risk factor for developing insulin resistance, hypertension, dyslipidemia and cardiovascular disease. Therefore, we studied the prevalence of HUA and associated risk factors in the population of two provinces in northern China. METHODS: Based on the research of Chinese Physiological Constant and Health Conditions conducted in 2008–2010, we enrolled 29,639 subjects in a randomized, stratified study in four sampling areas in Heilongjiang Province and the Inner Mongolia Autonomous Region. We collected 13,140 serum samples to determine biochemical indicators including uric acid(UA), glucose, blood lipids, liver function, and renal function, and finally a representative sample of 8439 aged 18 years and older was determined. We also defined and stratified HUA, hypertension, diabetes, obesity and lipid abnormalities according to international guidelines. RESULTS: There were significant differences in the UA levels between different genders and regions. The total prevalence of HUA is 13.7%. Men had a higher prevalence of HUA than women (21% vs. 7.9%; P < 0.0001). As age increased, HUA prevalence decreased in men but rose in women. The suburbs of big cities had the highest HUA prevalence (18.7%), and in high-prevalence areas the proportion of women with HUA also increased. A stepwise logistic regression model was used to filter out twelve HUA risk factors, including age, gender, residence, hypercholesterolemia, hypertriglyceridemia, impaired fasting glucose, hypertension, obesity, abdominal obesity, CKD, drinking and sleeping. After adjusting for these factors, the odds ratio of HUA was 1.92 times higher in men than in women. Compared with agricultural and pastoral areas, the odds ratio of having HUA was 2.14 for participants in the suburbs of big cities and 1.57 in the center of big cities. CONCLUSIONS: The prevalence of HUA is high in northern China. The differences in HUA prevalence by geographic region suggested that unbalanced economic development and health education, therefore HUA prevention measures should be strengthened to improve quality of life and reduce health care costs
High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement.
Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL
A quantum secret sharing scheme with verifiable function
In the threshold quantum secret sharing scheme, it is
difficult to ensure that internal participants are honest. In this paper, a
verifiable threshold quantum secret sharing scheme is
designed combined with classical secret sharing scheme. First of all, the
distributor uses the asymmetric binary polynomials to generate the shares and
sends them to each participant. Secondly, the distributor sends the initial
quantum state with the secret to the first participant, and each participant
performs unitary operation that using the mutually unbiased bases on the
obtained dimension single bit quantum state ( is a large odd prime
number). In this process, distributor can randomly check the participants, and
find out the internal fraudsters by unitary inverse operation gradually upward.
Then the secret is reconstructed after all other participants simultaneously
public transmission. Security analysis show that this scheme can resist both
external and internal attacks
Radiomics Analysis of Magnetic Resonance Imaging Facilitates the Identification of Preclinical Alzheimer's Disease: An Exploratory Study
Diagnosing Alzheimer's disease (AD) in the preclinical stage offers opportunities for early intervention; however, there is currently a lack of convenient biomarkers to facilitate the diagnosis. Using radiomics analysis, we aimed to determine whether the features extracted from multiparametric magnetic resonance imaging (MRI) can be used as potential biomarkers. This study was part of the Sino Longitudinal Study on Cognitive Decline project (NCT03370744), a prospective cohort study. All participants were cognitively healthy at baseline. Cohort 1 (n = 183) was divided into individuals with preclinical AD (n = 78) and controls (n = 105) using amyloid-positron emission tomography, and this cohort was used as the training dataset (80%) and validation dataset (the remaining 20%); cohort 2 (n = 51) was selected retrospectively and divided into "converters" and "nonconverters" according to individuals' future cognitive status, and this cohort was used as a separate test dataset; cohort three included 37 converters (13 from the Alzheimer's Disease Neuroimaging Initiative) and was used as another test set for independent longitudinal research. We extracted radiomics features from multiparametric MRI scans from each participant, using t-tests, autocorrelation tests, and three independent selection algorithms. We then established two classification models (support vector machine [SVM] and random forest [RF]) to verify the efficiency of the retained features. Five-fold cross-validation and 100 repetitions were carried out for the above process. Furthermore, the acquired stable high-frequency features were tested in cohort three by paired two-sample t-tests and survival analyses to identify whether their levels changed with cognitive decline and impact conversion time. The SVM and RF models both showed excellent classification efficiency, with an average accuracy of 89.7-95.9% and 87.1-90.8% in the validation set and 81.9-89.1% and 83.2-83.7% in the test set, respectively. Three stable high-frequency features were identified, all based on the structural MRI modality: the large zone high-gray-level emphasis feature of the right posterior cingulate gyrus, the variance feature of the left superior parietal gyrus, and the coarseness feature of the left posterior cingulate gyrus; their levels were correlated with amyloid-beta deposition and predicted future cognitive decline (areas under the curve 0.649-0.761). In addition, levels of the variance feature at baseline decreased with cognitive decline and could affect the conversion time (p < 0.05). In conclusion, this exploratory study shows that the radiomics features of multiparametric MRI scans could represent potential biomarkers of preclinical AD
- …
