9,968 research outputs found

    Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length

    Full text link
    We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled 85^{85}Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidium atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able to produce all four Bell states. These subnatural-linewidth photon pairs with polarization entanglement are ideal quantum information carriers for connecting remote atomic quantum nodes via efficient light-matter interaction in a photon-atom quantum network.Comment: Title changed, published version, 5 pages + 3 pages Supplemental Materia

    Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal

    Get PDF
    We propose a kind of electromagnetic (EM) diode based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This periodic microstructure has separately broken symmetries in both parity (P) and time-reversal (T) but obeys parity-time (PT) symmetry. This kind of diode could support bulk one-way propagating modes either for group velocity or phase velocity with various types of negative and positive refraction. This symmetry-broken system could be a platform to realize abnormal photoelectronic devices, and it may be analogous to an electron counterpart with one-way features

    Observation of Landau level-like quantizations at 77 K along a strained-induced graphene ridge

    Full text link
    Recent studies show that the electronic structures of graphene can be modified by strain and it was predicted that strain in graphene can induce peaks in the local density of states (LDOS) mimicking Landau levels (LLs) generated in the presence of a large magnetic field. Here we report scanning tunnelling spectroscopy (STS) observation of nine strain-induced peaks in LDOS at 77 K along a graphene ridge created when the graphene layer was cleaved from a sample of highly oriented pyrolytic graphite (HOPG). The energies of these peaks follow the progression of LLs of massless 'Dirac fermions' (DFs) in a magnetic field of 230 T. The results presented here suggest a possible route to realize zero-field quantum Hall-like effects at 77 K

    One-way cloak based on nonreciprocal photonic crystal

    Get PDF
    We propose a physical concept of non-reciprocal transformation optics, by which a one-way invisible cloak is designed. The one-way invisible cloak is made of a coordinate-transformed nonreciprocal photonic crystal, showing a perfect cloaking for wave incident from one direction but acting as a perfect reflector for wave from the counter direction. The proposed design shows a high promise of applications in military, as protecting the own information to be detected but efficiently grabbing the information from the “enemy” side

    Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene

    Full text link
    Theoretical research has predicted that ripples of graphene generates effective gauge field on its low energy electronic structure and could lead to zero-energy flat bands, which are the analog of Landau levels in real magnetic fields. Here we demonstrate, using a combination of scanning tunneling microscopy and tight-binding approximation, that the zero-energy Landau levels with vanishing Fermi velocities will form when the effective pseudomagnetic flux per ripple is larger than the flux quantum. Our analysis indicates that the effective gauge field of the ripples results in zero-energy flat bands in one direction but not in another. The Fermi velocities in the perpendicular direction of the ripples are not renormalized at all. The condition to generate the ripples is also discussed according to classical thin-film elasticity theory.Comment: 4 figures, Phys. Rev.

    Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode

    Get PDF
    Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices
    corecore