41 research outputs found

    A child presenting with acute renal failure secondary to a high dose of indomethacin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute renal failure caused by nonsteroidal anti-inflammatory drugs administered at therapeutic doses is generally mild, non-anuric and transitory. There are no publications on indomethacin toxicity secondary to high doses in children. The aim of this article is to describe acute renal failure secondary to a high dose of indomethacin in a child and to review an error in a supervised drug prescription and administration system.</p> <p>Case presentation</p> <p>Due to a medication error, a 20-day-old infant in the postoperative period of surgery for Fallot's tetralogy received a dose of 10 mg/kg of indomethacin, 50 to 100 times higher than the therapeutic dose. The child presented with acute, oligo-anuric renal failure requiring treatment with continuous venovenous renal replacement therapy, achieving complete recovery of renal function with no sequelae.</p> <p>Conclusion</p> <p>In order to reduce medication errors in critically ill children, it is necessary to develop a supervised drug prescription and administration system, with controls at various levels.</p

    Septic AKI in ICU patients. diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments

    Get PDF
    Evidence is accumulating showing that septic acute kidney injury (AKI) is different from non-septic AKI. Specifically, a large body of research points to apoptotic processes underlying septic AKI. Unravelling the complex and intertwined apoptotic and immuno-inflammatory pathways at the cellular level will undoubtedly create new and exciting perspectives for the future development (e.g., caspase inhibition) or refinement (specific vasopressor use) of therapeutic strategies. Shock complicating sepsis may cause more AKI but also will render treatment of this condition in an hemodynamically unstable patient more difficult. Expert opinion, along with the aggregated results of two recent large randomized trials, favors continuous renal replacement therapy (CRRT) as preferential treatment for septic AKI (hemodynamically unstable). It is suggested that this approach might decrease the need for subsequent chronic dialysis. Large-scale introduction of citrate as an anticoagulant most likely will change CRRT management in intensive care units (ICU), because it not only significantly increases filter lifespan but also better preserves filter porosity. A possible role of citrate in reducing mortality and morbidity, mainly in surgical ICU patients, remains to be proven. Also, citrate administration in the predilution mode appears to be safe and exempt of relevant side effects, yet still requires rigorous monitoring. Current consensus exists about using a CRRT dose of 25 ml/kg/h in non-septic AKI. However, because patients should not be undertreated, this implies that doses as high as 30 to 35 ml/kg/h must be prescribed to account for eventual treatment interruptions. Awaiting results from large, ongoing trials, 35 ml/kg/h should remain the standard dose in septic AKI, particularly when shock is present. To date, exact timing of CRRT is not well defined. A widely accepted composite definition of timing is needed before an appropriate study challenging this major issue can be launched

    Acute kidney injury in children

    Get PDF
    Acute kidney injury (AKI) (previously called acute renal failure) is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. The incidence of AKI in children appears to be increasing, and the etiology of AKI over the past decades has shifted from primary renal disease to multifactorial causes, particularly in hospitalized children. Genetic factors may predispose some children to AKI. Renal injury can be divided into pre-renal failure, intrinsic renal disease including vascular insults, and obstructive uropathies. The pathophysiology of hypoxia/ischemia-induced AKI is not well understood, but significant progress in elucidating the cellular, biochemical and molecular events has been made over the past several years. The history, physical examination, and laboratory studies, including urinalysis and radiographic studies, can establish the likely cause(s) of AKI. Many interventions such as ‘renal-dose dopamine’ and diuretic therapy have been shown not to alter the course of AKI. The prognosis of AKI is highly dependent on the underlying etiology of the AKI. Children who have suffered AKI from any cause are at risk for late development of kidney disease several years after the initial insult. Therapeutic interventions in AKI have been largely disappointing, likely due to the complex nature of the pathophysiology of AKI, the fact that the serum creatinine concentration is an insensitive measure of kidney function, and because of co-morbid factors in treated patients. Improved understanding of the pathophysiology of AKI, early biomarkers of AKI, and better classification of AKI are needed for the development of successful therapeutic strategies for the treatment of AKI

    Dialysis and pediatric acute kidney injury: choice of renal support modality

    Get PDF
    Dialytic intervention for infants and children with acute kidney injury (AKI) can take many forms. Whether patients are treated by intermittent hemodialysis, peritoneal dialysis or continuous renal replacement therapy depends on specific patient characteristics. Modality choice is also determined by a variety of factors, including provider preference, available institutional resources, dialytic goals and the specific advantages or disadvantages of each modality. Our approach to AKI has benefited from the derivation and generally accepted defining criteria put forth by the Acute Dialysis Quality Initiative (ADQI) group. These are known as the risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria. A modified pediatrics RIFLE (pRIFLE) criteria has recently been validated. Common defining criteria will allow comparative investigation into therapeutic benefits of different dialytic interventions. While this is an extremely important development in our approach to AKI, several fundamental questions remain. Of these, arguably, the most important are “When and what type of dialytic modality should be used in the treatment of pediatric AKI?” This review will provide an overview of the limited data with the aim of providing objective guidelines regarding modality choice for pediatric AKI. Comparisons in terms of cost, availability, safety and target group will be reviewed
    corecore