25 research outputs found

    Allele- and Tir-Independent Functions of Intimin in Diverse Animal Infection Models

    Get PDF
    Upon binding to intestinal epithelial cells, enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium trigger formation of actin pedestals beneath bound bacteria. Pedestal formation has been associated with enhanced colonization, and requires intimin, an adhesin that binds to the bacterial effector translocated intimin receptor (Tir), which is translocated to the host cell membrane and promotes bacterial adherence and pedestal formation. Intimin has been suggested to also promote cell adhesion by binding one or more host receptors, and allelic differences in intimin have been associated with differences in tissue and host specificity. We assessed the function of EHEC, EPEC, or C. rodentium intimin, or a set of intimin derivatives with varying Tir-binding abilities in animal models of infection. We found that EPEC and EHEC intimin were functionally indistinguishable during infection of gnotobiotic piglets by EHEC, and that EPEC, EHEC, and C. rodentium intimin were functionally indistinguishable during infection of C57BL/6 mice by C. rodentium. A derivative of EHEC intimin that bound Tir but did not promote robust pedestal formation on cultured cells was unable to promote C. rodentium colonization of conventional mice, indicating that the ability to trigger actin assembly, not simply to bind Tir, is required for intimin-mediated intestinal colonization. Interestingly, streptomycin pre-treatment of mice eliminated the requirement for Tir but not intimin during colonization, and intimin derivatives that were defective in Tir-binding still promoted colonization of these mice. These results indicate that EPEC, EHEC, and C. rodentium intimin are functionally interchangeable during infection of gnotobiotic piglets or conventional C57BL/6 mice, and that whereas the ability to trigger Tir-mediated pedestal formation is essential for colonization of conventional mice, intimin provides a Tir-independent activity during colonization of streptomycin pre-treated mice

    Burden of Cardiovascular Disease among Multi-Racial and Ethnic Populations in the United States: An Update from the National Health Interview Surveys

    Get PDF
    Purpose: The study aimed to provide new evidence of health disparities in cardiovascular disease (CVD) and diabetes mellitus (DM), and to examine their associations with lifestyle-related risk factors across the U.S. multi-racial and ethnic groups. Methods: The analysis included a randomized population sample of 68,321 subjects aged ≥18 years old who participated in the U.S. 2012 and 2013 National Health Interview Surveys. Hypertension, coronary heart disease (CHD), stroke and DM were classified according to participants’ self-report of physician diagnosis. Assessments of risk factors were measured using standard survey instruments. Associations of risk factors with hypertension, CHD, stroke and DM were analyzed using univariable and multivariable analysis methods. Results: Non-Hispanic (NH)-Blacks had significantly higher odds of hypertension, stroke and DM, while NH-Asians and Hispanics had significantly lower odds of stroke and higher odds of stroke and higher odds of DM than NH-Whites (p<0.001). NH-Whites had higher odds of CHD than NH-Black, NH-Asians and Hispanics (p<0.001). Increased body weight, cigarette smoking and physical inactivity were significantly associated with increased odds of hypertension, CHD, stroke and DM (p<0.001). However, the strengths of associations between lifestyle-related factors and the study outcomes were different across racial and ethnic groups. NH-Asians with BMI ≥30 kg/m2 had the highest odds ratios (OR, 95%CI) for hypertension (5.37, 4.01-7.18), CHD (2.93, 1.90-4.52) and stroke (2.23, 1.08-4.61), and had the second highest odd ratios for DM (3.78, 2.68-5.35) than NH-Whites, NH-Blacks and Hispanics. Conclusion: CVD and DM disproportionately affect the U.S. multi-racial and ethnic population. Although lifestyle-related risk factors are significantly associated with increased odds of CVD and DM, the impacts of risk factors on the study outcomes are different by race and ethnicity

    Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China

    Get PDF
    Pseudomonas aeruginosa is a major opportunistic pathogen in hospital-acquired infections and exhibits increasing antibiotic resistance. A rapid and sensitive molecular method for its detection in clinical samples is needed to guide therapeutic treatment and to control P. aeruginosa outbreaks. In this study, we established a polymerase spiral reaction (PSR) method for rapid detection of P. aeruginosa by targeting the toxA gene, which regulates exotoxin A synthesis. Real-time turbidity monitoring and a chromogenic visualization using hydroxynaphthol blue were used to assess the reaction. All 17 non- P. aeruginosa strains tested negative, indicating the high specificity of the PSR primers. The detection limit was 2.3 pg/µl within 60 min at isothermal temperature (65°C), 10-fold more sensitive than conventional PCR. Then, the PSR assay was applied to a clinical surveillance of P. aeruginosa in three top hospitals in Beijing, China. Of the 130 sputum samples collected from ICU patients with suspected multi-resistant infections, 37 P. aeruginosa isolates were identified from the positive samples. All clinical strains belonged to 10 different P. aeruginosa multilocus sequence typing groups and exhibited high resistance to carbapenems, cephalosporins, and aminoglycosides. Interestingly, of the 33 imipenem-resistant isolates, 30 (90.9%) had lost the outer membrane porin oprD gene. Moreover, isolate SY-95, containing multiple antibiotic resistance genes, possessed the ability to hydrolyze all antibiotics used in clinic and was susceptible only to polymyxin B. Our study showed the high level of antibiotic resistance and co-occurrence of resistance genes in the clinical strains, indicating a rapid and continuing evolution of P. aeruginosa. In conclusion, we developed a P. aeruginosa PSR assay, which could be a useful tool for clinical screening, especially in case of poor resources, or for point-of-care testing

    The apoptotic role of metacaspase in Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a major opportunistic pathogen that spreads in a range of animal species and human beings. Quite a few characterizations of apoptosis have been identified in T. gondii treated with apoptosis inducers, but the molecular mechanisms of the pathway are not clearly understood. Metacaspases are caspase-like cysteine proteases that can be found in plants, fungi, and protozoa in which caspases are absent. Metacaspases are multifunctional proteases involved in apoptosis-like cell death, insoluble protein aggregate clearance and cell proliferation. To investigate whether T. gondii metacaspase (TgMCA) is involved in the apoptosis of the parasites, we generated TgMCA mutant strains. Western blot analysis indicated that the autoproteolytic processing of TgMCA was the same as that for metacaspases of some other species. Indirect immunofluorescence assay (IFA) showed that TgMCA was dispersed throughout the cytoplasm and relocated to the nucleus when the parasites were exposed to the extracellular environment, which indicated the execution of its function in the nucleus. The number of apoptosis parasites was significantly diminished in the TgMCA knockout strain and increased in the TgMCA overexpression strain after treatment with extracellular buffer, as determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The lack of TgMCA did not affect the parasite propagation in vitro and virulence in vivo, suggesting that it is probably redundant in parasite propagation. But overexpression of TgMCA reduced the intracellular parasites growth in vitro. The TgMCA knockout strain showed more viability in extracellular buffer compared to the parental and overexpression lines. In this study, we demonstrated that TgMCA contributes to the apoptosis of T. gondii

    Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease

    Get PDF
    Abstract: Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson’s disease is the second most common neurodegenerative disorder and severely influences the patients’ life quality. Current gene therapy clinical trials for Parkinson’s disease employing viral vectors didn’t achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier and specific targeting to diseased brain cells

    Stimulation of airway and intestinal mucosal secretion by natural coumarin CFTR activators

    Get PDF
    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause lethal hereditary disease cystic fibrosis (CF) that involves extensive destruction and dysfunction of serous epithelium. Possible pharmacological therapy includes correction of defective intracellular processing and abnormal channel gating. In a previous study, we identified five natural coumarin potentiators of Δ508-CFTR including osthole, imperatorin, isopsoralen, praeruptorin A and scoparone. The present study was designed to determine the activity of these coumarine compounds on CFTR activity in animal tissues as a primary evaluation of their therapeutic potential. In the present study, we analyzed the affinity of these coumarin potentiators in activating wild-type CFTR and found that they are all potent activators. Osthole showed the highest affinity with Kd values &lt;50 nmol/L as determined by Ussing chamber short-circuit current assay. Stimulation of rat colonic mucosal secretion by osthole was tested by the Ussing chamber short-circuit current assay. Osthole reached maximal activation of colonic Cl- secretion at 5 mol/L. Stimulation of mouse tracheal mucosal secretion was analyzed by optical measurement of single gland secretion. Fluid secretion rate of tracheal single submucosal gland stimulated by osthole at 10mol/L was 3-fold more rapid than that in negative control. In both cases the stimulated secretions were fully abolished by CFTRinh-172. In conclusion, the effective stimulation of Cl– and fluid secretion in colonic and tracheal mucosa by osthole suggested the therapeutic potential of natural coumarine compounds for the treatment of cystic fibrosis and other CFTR-related diseases

    Maturation Along White Matter Tracts in Human Brain Using a Diffusion Tensor Surface Model Tract-Specific Analysis

    Get PDF
    Previous diffusion tensor imaging (DTI) tractography studies have demonstrated exponential patterns of developmental changes for diffusion parameters such as fractional anisotropy (FA) and mean diffusivity (MD) averaged over all voxels in major white matter (WM) tracts of the human brain. However, this assumes that the entire tract is changing in unison, which may not be the case. In this study, a surface model based tract specific analysis was applied to a cross-sectional cohort of 178 healthy subjects (83 males/95 females) aged from 6 to 30 years to spatially characterize the age-related changes of FA and MD along the trajectory of 7 major WM tracts – corpus callosum and 6 bilateral tracts. There were unique patterns of regions that showed different exponential and linear rates of increasing FA or decreasing MD and peak maturation age along each tract. Faster FA-development rate was observed in genu of corpus callosum (CC) and frontal-parietal part of superior longitudinal fasciculus (SLF). Inferior corticospinal tract (CST), posterior regions of association tracts such as inferior longitudinal fasciculus, inferior frontal fasciculus and uncinate fasciculus also displayed an early developmental pattern for FA. MD decreases with age also exhibited this posterior-to-anterior WM maturation pattern for most tracts in females. Both males and females displayed similar maturation patterns along most large tracts; however, males had overall delayed maturation peaks compared with females in most tracts with the greater differences occurring in the CST and frontal-parietal part of SLF for MD. Therefore, brain white matter development has spatially-varying trajectories along tracts that depend on sex and the tract

    The dampening effect of employees’ future orientation on cyberloafing behaviors: The mediating role of self-control

    Get PDF
    Previous studies on reducing employees’ cyberloafing behaviors have primarily examined the external control factors but seldomly taken individual internal subjective factors into consideration. Future orientation, an important individual factor, is defined as the extent to which one plans for future time and considers future consequences of one’s current behavior. To explore further whether and how employees’ future orientation can dampen their cyberloafing behaviors, two studies were conducted to examine the relationship between employees’ future orientation and cyberloafing behaviors. The mediation effect of employees’ objective and subjective self-control between them was also examined. In Study 1, a set of questionnaires was completed, and the results revealed that the relationship between employees’ future orientation and cyberloafing behaviors was negative, and objective self-control mediated the relationship. Next, we conducted a priming experiment (Study 2) to examine the causal relationship and psychological mechanism between employees’ future orientation and cyberloafing behaviors. The results demonstrated that employees’ future-orientation dampened their attitudes and intentions to engage in cyberloafing, and subjective self-control mediated this dampening effect. Theoretical and practical implications of these findings are also discussed

    Quantification of Lincomycin Resistance Genes Associated with Lincomycin Residues in Waters and Soils Adjacent to Representative Swine Farms in China

    Get PDF
    Lincomycin is commonly used on swine farms for growth promotion as well as disease treatment and control. Consequently, lincomycin may accumulate in the environment adjacent to the swine farms in many ways, thereby influencing antibiotic resistance in the environment. Levels of lincomycin-resistance genes and lincomycin residues in water and soil samples collected from multiple sites near wastewater discharge areas were investigated in this study. Sixteen lincomycin-resistance and 16S rRNA genes were detected using real-time PCR. Three genes, lnu(F), erm(A) and erm(B), were detected in all water and soil samples except control samples. Lincomycin residues were determined by rapid resolution liquid chromatography-tandem mass spectrometry, with concentrations detected as high as 9.29 ng/mL in water and 0.97 ng/g in soil. A gradual reduction in the levels of lincomycin-resistance genes and lincomycin residues in the waters and soils were detected from multiple sites along the path of wastewater discharging to the surrounding environment from the swine farms. Significant correlations were found between levels of lincomycin-resistance genes in paired water and soil samples (r = 0.885, p = 0.019), and between lincomycin-resistance genes and lincomycin residues (r = 0.975, p &lt; 0.01). This study emphasized the potential risk of dissemination of lincomycin-resistance genes such as lnu(F), erm(A) and erm(B), associated with lincomycin residues in surrounding environments adjacent to swine farms

    Myelination of the Postnatal Mouse Cochlear Nerve at the Peripheral-Central Nervous System Transitional Zone

    Get PDF
    In the nerve roots of vertebrates, the peripheral nervous system (PNS) and central nervous system (CNS) interface at the PNS-CNS transitional zone (PCTZ), which consists of cell boundaries with various myelin components. We have recently shown that the mouse cochlear nerve presents an exceptionally long segment of the CNS tissue extending into the PNS using light microscopy. However, it is unclear how oligodendrocytes and Schwann cells contribute to the formation of myelin components of the PCTZ. It is undetermined how myelination is initiated along the cochlear nerve, and when it adopts a mature pattern. In this study, immunofluorescence using antibodies specific to oligodendrocyte marker myelin oligodendrocyte glycoprotein (MOG) and Schwann cell marker myelin protein zero (MPZ) were used to detail the expression of myelin components along the postnatal mouse cochlear nerve. We found that the expression of MPZ was initially observed in the soma of bipolar spiral ganglion neurons at postnatal day 0 (P0) and progressed to the central and peripheral processes after P8-P10. Myelination of the CNS tissue was initiated in close proximity to the PCTZ from P7-P8 and then extended centrally. Myelination of the PCTZ reached a mature style at P14, when the interface of the expression of MOG and MPZ was clearly identified along the cochlear nerve. This knowledge of PCTZ formation of the cochlear nerve will be essential to future myelination research, and it will also gain clinical interest because of its relevance to the degeneration and regeneration of the auditory pathway in hearing impairment
    corecore