7,177 research outputs found

    Spin-Orbit Coupled Fermi Gases across a Feshbach Resonance

    Full text link
    In this letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using mean-field theory and exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for 1/(k_F a_s)<=0 due to increased density-of-state. Strong spin-orbit coupling also significantly enhances the superfluid transition temperature when 1/(k_F a_s)<=0, while suppresses it slightly when 1/(k_F a_s)>0. The universal interaction energy and pair size at resonance are also discussed.Comment: 4+3 pages, 4 figures, supplementary material adde

    Stability Condition of a Strongly Interacting Boson-Fermion Mixture across an Inter-Species Feshbach Resonance

    Full text link
    We study the properties of dilute bosons immersed in a single component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.Comment: 4 pages, 4 figure

    The Kβˆ’pβ†’Ξ£0Ο€0K^-p\to \Sigma^0\pi^0 reaction at low energies in a chiral quark model

    Full text link
    A chiral quark-model approach is extended to the study of the KΛ‰N\bar{K}N scattering at low energies. The process of Kβˆ’pβ†’Ξ£0Ο€0K^-p\to \Sigma^0\pi^0 at PK≲800P_K\lesssim 800 MeV/c (i.e. the center mass energy W≲1.7W\lesssim 1.7 GeV) is investigated. This approach is successful in describing the differential cross sections and total cross section with the roles of the low-lying Ξ›\Lambda resonances in n=1n=1 shells clarified. The Ξ›(1405)S01\Lambda(1405)S_{01} dominates the reactions over the energy region considered here. Around PK≃400P_K\simeq 400 MeV/c, the Ξ›(1520)D03\Lambda(1520)D_{03} is responsible for a strong resonant peak in the cross section. The Ξ›(1670)S01\Lambda(1670)S_{01} has obvious contributions around PK=750P_K=750 MeV/c, while the contribution of Ξ›(1690)D03\Lambda(1690)D_{03} is less important in this energy region. The non-resonant background contributions, i.e. uu-channel and tt-channel, also play important roles in the explanation of the angular distributions due to amplitude interferences.Comment: 18 pages and 7 figure
    • …
    corecore