22,673 research outputs found
The reaction at low energies in a chiral quark model
A chiral quark-model approach is extended to the study of the
scattering at low energies. The process of at
MeV/c (i.e. the center mass energy GeV) is
investigated. This approach is successful in describing the differential cross
sections and total cross section with the roles of the low-lying
resonances in shells clarified. The dominates the
reactions over the energy region considered here. Around MeV/c,
the is responsible for a strong resonant peak in the
cross section. The has obvious contributions around
MeV/c, while the contribution of is less
important in this energy region. The non-resonant background contributions,
i.e. -channel and -channel, also play important roles in the explanation
of the angular distributions due to amplitude interferences.Comment: 18 pages and 7 figure
Theory of the evolutionary minority game
We present a theory which describes a recently introduced model of an
evolving, adaptive system in which agents compete to be in the minority. The
agents themselves are able to evolve their strategies over time in an attempt
to improve their performance. The present theory explicitly demonstrates the
self-interaction, or so-called market impact, that agents in such systems
experience
Crowd-Anticrowd Theory of Multi-Agent Market Games
We present a dynamical theory of a multi-agent market game, the so-called
Minority Game (MG), based on crowds and anticrowds. The time-averaged version
of the dynamical equations provides a quantitatively accurate, yet intuitively
simple, explanation for the variation of the standard deviation (`volatility')
in MG-like games. We demonstrate this for the basic MG, and the MG with
stochastic strategies. The time-dependent equations themselves reproduce the
essential dynamics of the MG.Comment: Presented at APFA2 (Liege) July 2000. Proceedings: Eur.Phys.J. B
[email protected]
Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process
In this brief report we explore the energy landscapes of two spin glass
models using a greedy single-spin flipping process, {\tt Gmax}. The
ground-state energy density of the random maximum two-satisfiability problem is
efficiently approached by {\tt Gmax}. The achieved energy density
decreases with the evolution time as
with a small prefactor and a scaling coefficient , indicating an
energy landscape with deep and rugged funnel-shape regions. For the
Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly
gets trapped to a local minimal region of the energy landscape.Comment: 5 pages with 4 figures included. Accepted for publication in Physical
Review E as a brief repor
From market games to real-world markets
This paper uses the development of multi-agent market models to present a
unified approach to the joint questions of how financial market movements may
be simulated, predicted, and hedged against. We examine the effect of different
market clearing mechanisms and show that an out-of-equilibrium clearing process
leads to dynamics that closely resemble real financial movements. We then show
that replacing the `synthetic' price history used by these simulations with
data taken from real financial time-series leads to the remarkable result that
the agents can collectively learn to identify moments in the market where
profit is attainable. We then employ the formalism of Bouchaud and Sornette in
conjunction with agent based models to show that in general risk cannot be
eliminated from trading with these models. We also show that, in the presence
of transaction costs, the risk of option writing is greatly increased. This
risk, and the costs, can however be reduced through the use of a delta-hedging
strategy with modified, time-dependent volatility structure.Comment: Presented at APFA2 (Liege) July 2000. Proceedings: Eur. Phys. J. B
Latex file + 10 .ps figs. [email protected]
- …
