3,514 research outputs found

    Adaptive cyclically dominating game on co-evolving networks: Numerical and analytic results

    Full text link
    A co-evolving and adaptive Rock (R)-Paper (P)-Scissors (S) game (ARPS) in which an agent uses one of three cyclically dominating strategies is proposed and studied numerically and analytically. An agent takes adaptive actions to achieve a neighborhood to his advantage by rewiring a dissatisfying link with a probability pp or switching strategy with a probability 1−p1-p. Numerical results revealed two phases in the steady state. An active phase for p<pcrip<p_{\text{cri}} has one connected network of agents using different strategies who are continually interacting and taking adaptive actions. A frozen phase for p>pcrip>p_{\text{cri}} has three separate clusters of agents using only R, P, and S, respectively with terminated adaptive actions. A mean-field theory of link densities in co-evolving network is formulated in a general way that can be readily modified to other co-evolving network problems of multiple strategies. The analytic results agree with simulation results on ARPS well. We point out the different probabilities of winning, losing, and drawing a game among the agents as the origin of the small discrepancy between analytic and simulation results. As a result of the adaptive actions, agents of higher degrees are often those being taken advantage of. Agents with a smaller (larger) degree than the mean degree have a higher (smaller) probability of winning than losing. The results are useful in future attempts on formulating more accurate theories.Comment: 17 pages, 4 figure

    Role of quark-interchange processes in evolution of mesonic matter

    Full text link
    We divide the cross section for a meson-meson reaction into three parts. The first part is for the quark-interchange process, the second for quark-antiquark annihilation processes and the third for resonant processes. Master rate equations are established to yield time dependence of fugacities of pions, rhos, kaons and vetor kaons. The equations include cross sections for inelastic scattering of pions, rhos, kaons and vector kaons. Cross sections for quark-interchange-induced reactions, that were obtained in a potential model, are parametrized for convenient use. The number densities of pion and rho (kaon and vector kaon) are altered by quark-interchange processes in equal magnitudes but opposite signs. The master rate equations combined with the hydrodynamic equations for longitudinal and transverse expansion are solved with many sets of initial meson fugacities. Quark-interchange processes are shown to be important in the contribution of the inelastic meson-meson scattering to evolution of mesonic matter.Comment: 28 pages, 1 figure, 8 table

    Atypical viral dynamics from transport through popular places

    Full text link
    The flux of visitors through popular places undoubtedly influences viral spreading -- from H1N1 and Zika viruses spreading through physical spaces such as airports, to rumors and ideas spreading though online spaces such as chatrooms and social media. However there is a lack of understanding of the types of viral dynamics that can result. Here we present a minimal dynamical model which focuses on the time-dependent interplay between the {\em mobility through} and the {\em occupancy of} such spaces. Our generic model permits analytic analysis while producing a rich diversity of infection profiles in terms of their shapes, durations, and intensities. The general features of these theoretical profiles compare well to real-world data of recent social contagion phenomena.Comment: 14 pages, 16 figure
    • …
    corecore