8,743 research outputs found
Half-quantum vortex state in a spin-orbit coupled Bose-Einstein condensate
We investigate theoretically the condensate state and collective excitations
of a two-component Bose gas in two-dimensional harmonic traps subject to
isotropic Rashba spin-orbit coupling. In the weakly interacting regime when the
inter-species interaction is larger than the intra-species interaction
(), we find that the condensate ground state has a
half-quantum-angular-momentum vortex configuration with spatial rotational
symmetry and skyrmion-type spin texture. Upon increasing the interatomic
interaction beyond a threshold , the ground state starts to involve
higher-order angular momentum components and thus breaks the rotational
symmetry. In the case of , the condensate becomes
unstable towards the superposition of two degenerate half-quantum vortex
states. Both instabilities (at and ) can be
determined by solving the Bogoliubov equations for collective density
oscillations of the half-quantum vortex state, and by analyzing the softening
of mode frequencies. We present the phase diagram as functions of the
interatomic interactions and the spin-orbit coupling. In addition, we directly
simulate the time-dependent Gross-Pitaevskii equation to examine the dynamical
properties of the system. Finally, we investigate the stability of the
half-quantum vortex state against both the trap anisotropy and anisotropy in
the spin-orbit coupling term.Comment: 13 pages, 18 figure
Negative-Index Refraction in a Lamellar Composite with Alternating Single Negative Layers
Negative-index refraction is achieved in a lamellar composite with
epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively.
Based on the effective medium approximation, simultaneously negative effective
permittivity and permeability of such a lamellar composite are obtained
theoretically and further proven by full-wave simulations. Consequently, the
famous left-handed metamaterial comprising split ring resonators and wires is
interpreted as an analogy of such an ENG-MNG lamellar composite. In addition,
beyond the effective medium approximation, the propagating field squeezed near
the ENG/MNG interface is demonstrated to be left-handed surface waves with
backward phase velocity.Comment: 18 pages, 6 figure
Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps
We investigate theoretically the phase diagram of a spin-orbit coupled Bose
gas in two-dimensional harmonic traps. We show that discrete Landau levels
develop at strong spin-orbit coupling. For a weakly interacting gas, quantum
states with skyrmion lattice patterns emerge spontaneously and preserve either
parity symmetry or combined parity-time-reversal symmetry. These phases can be
readily observed by experimentally engineering spin-orbit coupling and
interatomic interactions for a cloud of Rb atoms in a highly oblate
trap.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Proposal for geometric generation of a biexciton in a quantum dot using a chirped pulse
We propose to create a biexciton by a coherent optical process using a
frequency-sweeping (chirped) laser pulse. In contrast to the two-photon Rabi
flop scheme, the present method uses the state transfer through avoided level
crossing and is a geometric control. The proposed process is robust against
pulse area uncertainty, detuning, and dephasing. The speed of the adiabatic
operation is constrained by the biexciton binding energy.Comment: 4 pages, 4 figure
Sufu and Gli3 repressor mediate the temporal basal-to-apical progression of hair cell differentiation in mammalian cochleae
Poster presentation - Theme 3: Development & stem cellsThe Sonic Hedgehog pathway plays important roles in mammalian inner ear development. Mutations of Shh, Smo and Gli3 lead to severe defects in mouse inner ear morphogenesis. However, knockout of Gli2 does not affect inner ear morphology or cochlear hair cell differentiation, suggesting that the Gli repressor function may be required for Hedgehog signaling during inner ear development. Sufu is a negative regulator of Hedgehog signaling and it functions to repress Gli activator and enhance Gli repressor ...postprin
Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons
We propose an efficient phase-encoding quantum secret key generation scheme
with heralded narrow-band single photons. The key information is carried by the
phase modulation directly on the single-photon temporal waveform without using
any passive beam splitters or optical switches. We show that, when the
technique is applied to the conventional fiber-based phase-encoding BB84 and
differential phase shift (DPS) quantum key distribution schemes, the key
generation efficiencies can be improved by a factor of 2 and 3, respectively.
For N(>3)-period DPS systems, the key generation efficiency can be improved by
a factor of N. The technique is suitable for quantum memory-based long-distance
fiber communication system.Comment: 5 pages, 5 figure
William (Bill) Peterson's contributions to ocean science, management, and policy
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation
Dynamic Nonlinear Effect on Lasing in Random Media
We investigate the dynamic effect of nonlinearity on lasing in disordered medium. The third-order nonlinearity not only changes frequency and size of lasing mode, but also modifies laser emission intensity and laser pulse width
- …