432 research outputs found

    A case of idiopathic isolated hypoglossal nerve palsy in a Korean child

    Get PDF
    Hypoglossal nerve palsy (HNP) is an uncommon neurological abnormality that can provoke characteristic clinical signs, including unilateral atrophy of the tongue musculature. We present the case of a healthy 11-year-old Korean male who was admitted to the outpatient department of our institution with acute onset dysarthria, tongue fasciculations, and right-sided tongue weakness upon awakening. His evaluation included a virology work-up, neck magnetic resonance imaging (MRI), brain MRI, and otorhinolaryngological physical examination; all tests were normal and showed no evidence of inflammation. Fifteen days after the onset of symptoms, the patient recovered completely. Herein, we report a case of idiopathic isolated HNP in a Korean male

    Chromosome-scale assembly comparison of the Korean Reference Genome KOREF from PromethION and PacBio with Hi-C mapping information.

    Get PDF
    BACKGROUND:Long DNA reads produced by single-molecule and pore-based sequencers are more suitable for assembly and structural variation discovery than short-read DNA fragments. For de novo assembly, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are the favorite options. However, PacBio's SMRT sequencing is expensive for a full human genome assembly and costs more than $40,000 US for 30× coverage as of 2019. ONT PromethION sequencing, on the other hand, is 1/12 the price of PacBio for the same coverage. This study aimed to compare the cost-effectiveness of ONT PromethION and PacBio's SMRT sequencing in relation to the quality. FINDINGS:We performed whole-genome de novo assemblies and comparison to construct an improved version of KOREF, the Korean reference genome, using sequencing data produced by PromethION and PacBio. With PromethION, an assembly using sequenced reads with 64× coverage (193 Gb, 3 flowcell sequencing) resulted in 3,725 contigs with N50s of 16.7 Mb and a total genome length of 2.8 Gb. It was comparable to a KOREF assembly constructed using PacBio at 62× coverage (188 Gb, 2,695 contigs, and N50s of 17.9 Mb). When we applied Hi-C-derived long-range mapping data, an even higher quality assembly for the 64× coverage was achieved, resulting in 3,179 scaffolds with an N50 of 56.4 Mb. CONCLUSION:The pore-based PromethION approach provided a high-quality chromosome-scale human genome assembly at a low cost with long maximum contig and scaffold lengths and was more cost-effective than PacBio at comparable quality measurements

    Oyaksungisan, a Traditional Herbal Formula, Inhibits Cell Proliferation by Induction of Autophagy via

    Get PDF
    Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell death via modulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy

    Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoids are lipophilic isoprenoids composed of a cyclic group and a linear chain with a hydrophilic end group. These compounds include retinol, retinal, retinoic acid, retinyl esters, and various derivatives of these structures. Retinoids are used as cosmetic agents and effective pharmaceuticals for skin diseases. Retinal, an immediate precursor of retinoids, is derived by β-carotene 15,15'-mono(di)oxygenase (BCM(D)O) from β-carotene, which is synthesized from the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Retinoids are chemically unstable and biologically degraded via retinoic acid. Although extensive studies have been performed on the microbial production of carotenoids, retinoid production using microbial metabolic engineering has not been reported. Here, we report retinoid production using engineered <it>Escherichia coli </it>that express exogenous BCM(D)O and the mevalonate (MVA) pathway for the building blocks synthesis in combination with a two-phase culture system using a dodecane overlay.</p> <p>Results</p> <p>Among the BCM(D)O tested in <it>E. coli</it>, the synthetic retinoid synthesis protein (SR), based on bacteriorhodopsin-related protein-like homolog (Blh) of the uncultured marine bacteria 66A03, showed the highest β-carotene cleavage activity with no residual intracellular β-carotene. By introducing the exogenous MVA pathway, 8.7 mg/L of retinal was produced, which is 4-fold higher production than that of augmenting the MEP pathway (<it>dxs </it>overexpression). There was a large gap between retinal production and β-carotene consumption using the exogenous MVA pathway; therefore, the retinal derivatives were analyzed. The derivatives, except for retinoic acid, that formed were identified, and the levels of retinal, retinol, and retinyl acetate were measured. Amounts as high as 95 mg/L retinoids were obtained from engineered <it>E. coli </it>DH5α harboring the synthetic <it>SR </it>gene and the exogenous MVA pathway in addition to <it>dxs </it>overexpression, which were cultured at 29°C for 72 hours with 2YT medium containing 2.0% (w/v) glycerol as the main carbon source. However, a significant level of intracellular degradation of the retinoids was also observed in the culture. To prevent degradation of the intracellular retinoids through <it>in situ </it>extraction from the cells, a two-phase culture system with dodecane was used. The highest level of retinoid production (136 mg/L) was obtained after 72 hours with 5 mL of dodecane overlaid on a 5 mL culture.</p> <p>Conclusions</p> <p>In this study, we successfully produced 136 mg/L retinoids, which were composed of 67 mg/L retinal, 54 mg/L retinol, and 15 mg/L retinyl acetate, using a two-phase culture system with dodecane, which produced 68-fold more retinoids than the initial level of production (2.2 mg/L). Our results demonstrate the potential use of <it>E. coli </it>as a promising microbial cell factory for retinoid production.</p

    Comparative outcomes of the pathogen in cultured Jones tubes used in lacrimal bypass surgery according to follow up periods

    Get PDF
    AIM: To evaluate the pathogens in cultured Jones tubes used in lacrimal bypass surgery according to the postoperative periods and to obtain data for the prevention of infection of functional lacrimal stent invention. METHODS: Totally 71 patients (81 eyes) who underwent the removal of Jones tubes were enrolled in study. All the removed Jones tubes were cultured for bacterial and fungal identification and tested for bacterial antibiotic sensitivity. The results were analyzed according to the duration of the inserted Jones tube after lacrimal bypass surgery. RESULTS: Of the 81 eyes, bacteria were isolated from 69 eyes (85.2%) and fungi from 6 eyes (7.4%). Among 69 eyes, 40.6% showed Staphylococcus aureus (S. aureus), 11.6% were Pseudomonas aeruginosa (P. aeruginosa). Gram-positive bacteria were isolated more than Gram-negative bacteria, but Gram-negative bacteria showed a higher incidence in the Jones tube implanted for over 10y (P=0.035). The antibiotic sensitivity test showed that 46.4% of S. aureus were resistant to oxacillin. In terms of antibiotics commonly used in ocular clinical practice, vancomycin was sensitive to S. aureus and Streptococcus pneumoniae (S. pneumoniae), amikacin responded to P. aeruginosa and Proteus mirabilis (P. mirabilis). Trimethoprim/sulfamethoxazole (TMP/SMX) was all sensitive to S. aureus, S. pneumoniae and P. mirabilis except P. aeruginosa. CONCLUSION: S. aureus is the most commonly found organism in the Jones tube after lacrimal bypass surgery, and 46.4% of them are methicillin-resistant S. aureus (MRSA), sensitive to vancomycin. Especially, P. mirabilis responded with amikacin is dominantly detected in the Jones tubes implanted for more than 10y

    Subchronic oral toxicity of silver nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems.</p> <p>Results</p> <p>This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys.</p> <p>Conclusions</p> <p>The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study.</p

    Premixed Calcium Silicate-Based Root Canal Sealer Reinforced with Bioactive Glass Nanoparticles to Improve Biological Properties

    Get PDF
    Recently, bioactive glass nanoparticles (BGns) have been acknowledged for their ability to promote interactions with the periapical tissue and enhance tissue regeneration by releasing therapeutic ions. However, there have been no studies on calcium silicate sealers with bioactive glass nanoparticle (BGn) additives. In the present study, a premixed calcium silicate root canal sealer reinforced with BGn (pre-mixed-RCS@BGn) was developed and its physicochemical features and biological effects were analyzed. Three specimens were in the trial: 0%, 0.5%, and 1% bioactive glass nanoparticles (BGns) were gradually added to the premixed type of calcium silicate-based sealer (pre-mixed-RCS). To elucidate the surface properties, scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy were used and flowability, setting time, solubility, and radiopacity were analyzed to evaluate the physical properties. Chemical properties were investigated by water contact angle, pH change, and ion release measurements. The antibacterial effects of the bioactive set sealers were tested with Enterococcus faecalis and the viability of human bone marrow-derived mesenchymal stem cells (hMSCs) with this biomaterial was examined. In addition, osteogenic differentiation was highly stimulated, which was confirmed by ALP (Alkaline phosphatase) activity and the ARS (Alizarin red S) staining of hMSCs. The pre-mixed-RCS@BGn satisfied the ISO standards for root canal sealers and maintained antimicrobial activity. Moreover, pre-mixed-RCS@BGn with more BGns turned out to have less cytotoxicity than pre-mixed-RCS without BGns while promoting osteogenic differentiation, mainly due to calcium and silicon ion release. Our results suggest that BGns enhance the biological properties of this calcium silicate-based sealer and that the newly introduced pre-mixed-RCS@BGn has the capability to be applied in dental procedures as a root canal sealer. Further studies focusing more on the biocompatibility of pre-mixed-RCS@BGn should be performed to investigate in vivo systems, including pulp tissue
    corecore