14,355 research outputs found

    A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837

    Get PDF
    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is clearly detected and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power-law with a photon index of ~1.3. We also find X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at the 14.8-hr binary orbital period. All these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723-2837 provides strong evidence that the X-rays are from the intrabinary shock via an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler

    Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets

    Full text link
    We present a new class of boron sheets, composed of triangular and hexagonal motifs, that are more stable than structures considered to date and thus are likely to be the precursors of boron nanotubes. We describe a simple and clear picture of electronic bonding in boron sheets and highlight the importance of three-center bonding and its competition with two-center bonding, which can also explain the stability of recently discovered boron fullerenes. Our findings call for reconsideration of the literature on boron sheets, nanotubes, and clusters.Comment: 4 pages, 4 figures, 1 tabl

    NuSTAR observations and broadband spectral energy distribution modeling of the millisecond pulsar binary PSR J1023+0038

    Get PDF
    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ~79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher that in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intra-binary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting the disappearance of the X-ray orbital modulation.Comment: 8 pages, 6 figures; accepted for publication in Ap

    Swift, XMM-Newton, and NuSTAR observations of PSR J2032+4127/MT91 213

    Get PDF
    We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the gamma-ray binary candidate with a period of 45-50 years. The coming periastron of the system was predicted to be in November 2017, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/16 showed that its X-ray emission has been brighter by a factors of ~10 than that before 2013, probably revealing some on-going activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme gamma-ray binary during the periastron passage in late 2017.Comment: 6 pages, including 3 figures and 2 tables. Accepted for publication in Ap

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap
    • …
    corecore