3 research outputs found

    Absorber Foam Characterization for Predicting Overall Anechoic Chamber Performance

    Get PDF
    A new rectangular anechoic chamber (20’L x 10’W x 9’7”H) has been established at California Polytechnic State University (Cal Poly) through donations and financial support from industry and Cal Poly departments and programs. The chamber was designed and constructed by three graduate students as part of their thesis studies to explore and further their understanding of chamber design and antenna measurements. The chamber project has included RF absorber characterization, overall chamber performance assessment, and software development for the coordination of a positioner with a vector network analyzer. This paper presents absorber characterization as a function of incidence angle and orientation to enable an overall chamber performance analysis. Test data at low incidence angles (\u3c 30o) are compared to manufacturer performance curves at normal incidence. The mean response of the measured data indicates a correlation with manufacturer curves. Through ray tracing analysis, the ripple encountered in the test data is used to identify two effective reflection planes indicative of the foam geometry. The measured data are subsequently used to predict overall anechoic chamber performance to within 1dB for a majority of the actual scan data. Details of this analysis and comparisons to actual chamber performance are presented in a companion paper

    Measurement Sensitivity and Accuracy Verification for an Antenna Measurement System

    Get PDF
    An antenna measurement system was developed to complement a new rectangular anechoic chamber (20’L x 10’W x 9’7”H) that has been established at California Polytechnic State University (Cal Poly) through donations and financial support from industry and Cal Poly departments and programs. Software algorithms were written to provide four data acquisition methods: continual sweep and step mode for both single and multiple frequencies. Log magnitude and phase information for an antenna under test is captured over a user-specified angular position range and the antenna\u27s radiation pattern is obtained after post processing. Pattern comparisons against theoretical predictions are performed. Finally an RF link budget is calculated to evaluate the performance of the antenna measurement system

    Reflectivity Characterization and Identification of Primary Reflection Path in Anechoic Chamber Analysis

    Get PDF
    This paper presents an analysis of the reflectivity performance of the anechoic chamber. Measurements indicating the performance of the chamber-installed foam absorbers (described in a companion paper) are used to complete this analysis. This is followed by a comparison of the analysis results to chamber measurements taken in accordance with the free-space VSWR procedure [1]. Agreement between the analysis results and worst-case VSWR test measurements is within 1dB for a majority of reflection angles. In addition to chamber performance predictions, this paper describes a method of identifying primary reflection paths through interferometer calculations that compare all single bounce reflection path lengths to the direct path length. The angular spacing between interferometer nulls is used to identify the primary reflection direction. This information can be used to improve the overall chamber reflectivity by identifying areas of significant reflections and enhancing absorber treatments in these areas
    corecore