3,603 research outputs found

    Tracking the transmission and evolution of MERS-CoV

    Get PDF

    ALMA CO(3-2) Observations of Star-Forming Filaments in a Gas-Poor Dwarf Spheroidal Galaxy

    Full text link
    We report ALMA observations of 12^{12}CO(3-2) and 13^{13}CO(3-2) in the gas-poor dwarf galaxy NGC 5253. These 0.3"(5.5 pc) resolution images reveal small, dense molecular gas clouds that are located in kinematically distinct, extended filaments. Some of the filaments appear to be falling into the galaxy and may be fueling its current star formation. The most intense CO(3-2) emission comes from the central \sim100 pc region centered on the luminous radio-infrared HII region known as the supernebula. The CO(3-2) clumps within the starburst region are anti-correlated with Hα\alpha on \sim5 pc scales, but are well-correlated with radio free-free emission. Cloud D1, which enshrouds the supernebula, has a high 12^{12}CO/13^{13}CO ratio, as does another cloud within the central 100 pc starburst region, possibly because the clouds are hot. CO(3-2) emission alone does not allow determination of cloud masses as molecular gas temperature and column density are degenerate at the observed brightness, unless combined with other lines such as 13^{13}CO.Comment: 7 pages, 5 figures, Accepted to Ap

    Monsoons, ITCZs, and the Concept of the Global Monsoon

    Get PDF
    Earth's tropical and subtropical rainbands, such as Intertropical Convergence Zones (ITCZs) and monsoons, are complex systems, governed by both large‐scale constraints on the atmospheric general circulation and regional interactions with continents and orography, and coupled to the ocean. Monsoons have historically been considered as regional large‐scale sea breeze circulations, driven by land‐sea contrast. More recently, a perspective has emerged of a global monsoon, a global‐scale solstitial mode that dominates the annual variation of tropical and subtropical precipitation. This results from the seasonal variation of the global tropical atmospheric overturning and migration of the associated convergence zone. Regional subsystems are embedded in this global monsoon, localized by surface boundary conditions. Parallel with this, much theoretical progress has been made on the fundamental dynamics of the seasonal Hadley cells and convergence zones via the use of hierarchical modeling approaches, including aquaplanets. Here we review the theoretical progress made and explore the extent to which these advances can help synthesize theory with observations to better understand differing characteristics of regional monsoons and their responses to certain forcings. After summarizing the dynamical and energetic balances that distinguish an ITCZ from a monsoon, we show that this theoretical framework provides strong support for the migrating convergence zone picture and allows constraints on the circulation to be identified via the momentum and energy budgets. Limitations of current theories are discussed, including the need for a better understanding of the influence of zonal asymmetries and transients on the large‐scale tropical circulation

    Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium

    Full text link
    We study the momentum distribution and relaxation dynamics of semiconductor microcavity polaritons by angle-resolved and time-resolved spectroscopy. Above a critical pump level, the thermalization time of polaritons at positive detunings becomes shorter than their lifetime, and the polaritons form a quantum degenerate Bose-Einstein distribution in thermal equilibrium with the lattice.Comment: Updated with the published versio

    Constraining the Metallicity of the Low Density Lyman-alpha Forest Using OVI Absorption

    Get PDF
    We search for OVI absorption in a Keck HIRES spectrum of the z=3.62 quasar Q1422+231. Comparison of CIV measurements to cosmological simulations shows that \lya forest absorbers with N_HI > 10^{14.5} have [C/H]~=-2.5, for the UV background spectrum of Haardt & Madau (HM). Lower column density absorption arises in lower density gas, where OVI is the most sensitive metal tracer. Since OVI lines lie at wavelengths contaminated by Lyman series absorption, we interpret our Q1422 results by comparing to artificial spectra drawn from an SPH simulation of a Lambda-dominated CDM model. A search for deep, narrow features in Q1422 yields only a few candidate OVI lines, statistically consistent with the number in artificial spectra with no metals; spectra generated with the HM background and [O/H] >= -2.5 predict too many narrow lines. However, applying the optical depth ratio technique of Songaila (1998), we DO find significant OVI associated with CIV systems; matching Q1422 requires [O/C]~=+0.5, implying [O/H]~=-2.0. Taken together these results imply that (a) the metallicity in the low density IGM is at least a factor of three below that in the overdense regions where CIV absorption is detectable, and (b) oxygen is overabundant in these regions, consistent with the enrichment pattern of old halo stars. If the UV background is heavily truncated above 4 Ry, an implausibly high oxygen overabundance ([O/C]>+2) is required by the data; thus a majority of the volume of the universe must have undergone helium reionization by z=3.(Abridged)Comment: Submitted to ApJ, 48 pp including 14 ps figures, uses aaspp4.st

    The Dynamics of the Global Monsoon: Connecting Theory and Observations

    Get PDF
    Earth's monsoons are complex systems, governed by both large-scale constraints on the atmospheric general circulation and regional interactions with continents and orography, and coupled to the ocean. Monsoons have historically been considered as distinct regional systems, and the prevailing view has been, and remains, an intuitive picture of monsoons as a form of large-scale sea breeze, driven by land-sea contrast. However, climate dynamics is seldom intuitive. More recently, a perspective has emerged within the observational and Earth system modeling communities of a global monsoon that is the result of a seasonally migrating tropical convergence zone, intimately connected to the global tropical atmospheric overturning and localized by regional characteristics. Parallel with this, over the past decade, much theoretical progress has been made in understanding the fundamental dynamics of the seasonal Hadley cells and Intertropical Convergence Zones via the use of hierarchical modeling approaches, including highly idealized simulations such as aquaplanets. Here we review the theoretical progress made, and explore the extent to which these theoretical advances can help synthesize theory with observations and understand differing characteristics of regional monsoons. We show that this theoretical work provides strong support for the migrating convergence zone picture, allows constraints on the circulation to be identified via the momentum and energy budgets, and lays out a framework to assess variability and possible future changes to the monsoon. Limitations of current theories are discussed, including the need for a better understanding of the influence of zonal asymmetries and transients on the large-scale tropical circulation
    corecore