31,187 research outputs found

    Radio and X-ray nebulae associated with PSR J1509-5850

    Full text link
    We have discovered a long radio trail at 843 MHz which is apparently associated with middle age pulsar PSR J1509-5850. The radio trail has a length of ~7 arcmin. In X-rays, Chandra observations of PSR J1509-5850 reveal an associated X-ray trail which extends in the same orientation as the radio trail. Moreover, two clumpy structures are observed along the radio trail. The larger one is proposed to be the supernova remnant (SNR) candidate MSC 319.9-0.7. Faint X-ray enhancement at the position of the SNR candidate is found in the Chandra data.Comment: Accepted by A&A, 5 pages, 4 figures, 1 tabl

    Resolving the bow-shock nebula around the old pulsar PSR B1929+10 with multi-epoch Chandra observations

    Full text link
    We have studied the nearby old pulsar PSR B1929+10 and its surrounding interstellar medium utilizing the sub-arcsecond angular resolution of the Chandra X-ray Observatory. The Chandra data are found to be fully consistent with the results obtained from deep XMM-Newton observations as far as the pulsar is concerned. We confirm the non-thermal emission nature of the pulsar's X-radiation. In addition to the X-ray trail already seen in previous observations by the ROSAT and XMM-Newton X-ray observatories, we discovered an arc-like nebula surrounding the pulsar. We interpret the feature as a bow-shock nebula and discuss its energetics in the context of standard shock theory.Comment: Accepted by A&A, revised in accordance with referee's comment

    Discovery of an X-ray Nebula associated with PSR J2124-3358

    Get PDF
    We report the discovery of an X-ray nebula associated with the nearby millisecond pulsar PSR J2124-3358. This is the first time that extended emission from a solitary millisecond pulsar is detected. The emission extends from the pulsar to the northwest by ~ 0.5 arcmin. The spectrum of the nebular emission can be modeled by a power law spectrum with photon index of 2.2 +/-0.4. This is inline with the emission being originated from accelerated particles in the post shock flow.Comment: roceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.13-1
    • …
    corecore