276 research outputs found
Sex hormone-binding globulin regulation of androgen bioactivity in vivo : validation of the free hormone hypothesis
Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a liganddependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology
Targeted expression of human FSH receptor Asp567Gly mutant mRNA in testis of transgenic mice: role of the human FSH receptor promoter.
AIM: To specifically express the Asp567Gly human follicle-stimulating hormone receptor (FSHR) under the control of its promoter to evaluate the phenotypic consequences in the presence of normal pituitary function. METHODS: We produced transgenic mice overexpressing the Asp567Gly human FSHR under the control of a 1.5kb 5'-flanking region fragment of its promoter. RESULTS: Mice were phenotypically normal and fertile. In males, mRNA could be detected in the testis and the brain, indicating that the 1.5kb promoter fragment drives expression not only in the gonads. The testis weight/body weight ratio and the testosterone levels in transgenic and non-transgenic littermates were similar. By in situ hybridisation we found that the transgenic FSHR was highly expressed in Sertoli cells, spermatocytes and round spermatids. However, a radioligand receptor assay failed to show a significant difference in total FSHR binding sites in testis homogenates of transgenic and wild type animals, suggesting that the transgenic FSHR is probably not translated into functional receptor protein. CONCLUSION: A 1.5kb 5'-region of the human FSHR drives mRNA expression of the transgene in the testis but leads to ectopic expression in germ cells and in the brain. No phenotypic consequences could be documented due to the lack of protein expression
Serum Müllerian inhibiting substance levels are lower in premenopausal women with breast precancer and cancer
<p>Abstract</p> <p>Background</p> <p>In preclinical studies, müllerian inhibiting substance (MIS) has a protective affect against breast cancer. Our objective was to determine whether serum MIS concentrations were associated with cancerous or precancerous lesions. Blood from 30 premenopausal women was collected and serum extracted prior to their undergoing breast biopsy to assess a suspicious lesion found on imaging or physical examination. Based on biopsy results, the serum specimens were grouped as cancer (invasive or ductal carcinoma <it>in situ</it>), precancer (atypical hyperplasia or lobular carcinoma <it>in situ</it>), or benign.</p> <p>Findings</p> <p>Serum from women with cancer and precancer (p = .0009) had lower MIS levels than serum from women with benign disease.</p> <p>Conclusion</p> <p>Our findings provide preliminary evidence for MIS being associated with current breast cancer risk, which should be validated in a larger population.</p
Constitutively active follicle-stimulating hormone receptor enables androgen-independent spermatogenesis
Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr(-/-) mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution
The ESR1 (6q25) locus is associated with calcaneal ultrasound parameters and radial volumetric bone mineral density in European men
<p><b>Purpose:</b> Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor alpha gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMD(a)) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men.</p>
<p><b>Methods:</b> Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40-79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression.</p>
<p><b>Results:</b> 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMD(a), a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMD(a) and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness.</p>
<p><b>Conclusions:</b> Our data replicate previous associations found between SNPs in the 6q25 locus and BMD(a) at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD.</p>
The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility
Acknowledgements The authors wish to thank all of the primary care practices and participants in the EPIFUND study, the EPIFUND study team and Arthritis Research UK lab staff for carrying out the genotyping. The authors thank the men who participated in the seven countries and the research/nursing staff in the seven centres of the EMAS study used in the current analysis: C Pott (Manchester), E Wouters (Leuven), M del Mar Fernandez (Santiago de Compostela), M Jedrzejowska (Lodz), H-M Tabo (Tartu) and A Heredi (Szeged) for their data collection, and C Moseley (Manchester) for data entry and project coordination. DV and SB are senior clinical investigators of the Fund for Scientific Research-Flanders, Belgium (F W O-Vlaanderen). SB is holder of the Leuven University Chair in Gerontology and Geriatrics. The researchers thank the Framingham study participants and personnel. This work was supported by Arthritis Research UK, Chesterfield, UK. The European Male Ageing Study (EMAS) is funded by the Commission of the European Communities Fifth Framework Programme ‘Quality of life and management of living resources’ grant QLK6-CT-2001-00258. Genotyping of the Dyne Steel DNA Bank for Ageing and Cognition cohort was supported by the BBSRC and the study was supported by AgeUK. The Framingham study was supported by grants from the National Heart, Lung, and Blood Institute (NHLBI contract N01-HC-25195) and NIH AR47785 and AG18393.Peer reviewedPublisher PD
A validation of the first genome-wide association study of calcaneus ultrasound parameters in the European Male Ageing Study
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background A number of single nucleotide polymorphisms (SNPs) have been associated with broadband ultrasound attenuation (BUA) and speed of sound (SOS) as measured by quantitative ultrasound (QUS) at the calcaneus in the Framingham 100K genome-wide association study (GWAS) but have not been validated in independent studies. The aim of this analysis was to determine if these SNPs are associated with QUS measurements assessed in a large independent population of European middle-aged and elderly men. The association between these SNPs and bone mineral density (BMD) measured using dual-energy X-ray absorptiometry (DXA) was also tested. Methods Men aged 40-79 years (N = 2960) were recruited from population registers in seven European centres for participation in an observational study of male ageing, the European Male Ageing Study (EMAS). QUS at the calcaneus was measured in all subjects and blood was taken for genetic analysis. Lumbar spine (LS), femoral neck (FN) and total hip (TH) BMD were measured by DXA in a subsample of 620 men in two centres. SNPs associated with BUA or SOS in the Framingham study with p < 10-4 were selected and genotyped using SEQUENOM technology. Linear regression was used to test for the association between SNPs and standardised (SD) bone outcomes under an additive genetic model adjusting for centre. The same direction of effect and p < 0.05 indicated replication. Results Thirty-four of 38 selected SNPs were successfully genotyped in 2377 men. Suggestive evidence of replication was observed for a single SNP, rs3754032, which was associated with a higher SOS (β(SD) = 0.07, p = 0.032) but not BUA (β(SD) = 0.02, p = 0.505) and is located in the 3'UTR of WDR77 (WD repeat domain 77) also known as androgen receptor cofactor p44. A single SNP, rs238358, was associated with BMD at the LS (β(SD) = -0.22, p = 0.014), FN (β(SD) = -0.31,p = 0.001) and TH (β(SD) = -0.36, p = 0.002) in a locus previously associated with LS BMD in large-scale GWAS, incorporating AKAP11 and RANKL. Conclusions We found suggestive evidence of association between a single SNP located in the 3'UTR of WDR77 with calcaneal ultrasound parameters. The majority of SNPs, associated with QUS parameters in the Framingham Study, were not replicated in an independent population sample of European men.Published versio
Follicle-stimulating hormone promotes growth of human prostate cancer cell line-derived tumor xenografts
Chemical castration in prostate cancer can be achieved with gonadotropin-releasing hormone (GnRH) agonists or antagonists. Their effects differ by the initial flare of gonadotropin and testosterone secretion with agonists and the immediate pituitary-testicular suppression by antagonists. While both suppress luteinizing hormone (LH) and follicle-stimulating hormone (FSH) initially, a rebound in FSH levels occurs during agonist treatment. This rebound is potentially harmful, taken the expression of FSH receptors (R) in prostate cancer tissue. We herein assessed the role of FSH in promoting the growth of androgen-independent (PC-3, DU145) and androgen-dependent (VCaP) human prostate cancer cell line xenografts in nude mice. Gonadotropins were suppressed with the GnRH antagonist degarelix, and effects of add-back human recombinant FSH were assessed on tumor growth. All tumors expressed GnRHR and FSHR, and degarelix treatment suppressed their growth. FSH supplementation reversed the degarelix-evoked suppression of PC-3 tumors, both in preventive (degarelix and FSH treatment started upon cell inoculation) and therapeutic (treatments initiated 3 weeks after cell inoculation) setting. A less marked, though significant FSH effect occurred in DU145, but not in VCaP xenografts. FSHR expression in the xenografts supports direct FSH stimulation of tumor growth. Testosterone supplementation, to maintain the VCaP xenografts, apparently masked the FSH effect on their growth. Treatment with the LH analogue hCG did not affect PC-3 tumor growth despite their expression of luteinizing hormone/choriongonadotropin receptor. In conclusion, FSH, but not LH, may directly stimulate the growth of androgen-independent prostate cancer, suggesting that persistent FSH suppression upon GnRH antagonist treatment offers a therapeutic advantage over agonist
MicroRNA Expression and Regulation in Human Ovarian Carcinoma Cells by Luteinizing Hormone
MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR.Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR-) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0-20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼ 100,000 transcripts with ∼ 400 non-coding microRNAs.In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs.The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles
- …