1,915 research outputs found
Phase Transitions of Boron Carbide: Pair Interaction Model of High Carbon Limit
Boron Carbide exhibits a broad composition range, implying a degree of
intrinsic substitutional disorder. While the observed phase has rhombohedral
symmetry (space group R3(bar)m), the enthalpy minimizing structure has lower,
monoclinic, symmetry (space group Cm). The crystallographic primitive cell
consists of a 12-atom icosahedron placed at the vertex of a rhombohedral
lattice, together with a 3-atom chain along the 3-fold axis. In the limit of
high carbon content, approaching 20% carbon, the icosahedra are usually of type
B11Cp, where the p indicates the carbon resides on a polar site, while the
chains are of type C-B-C. We establish an atomic interaction model for this
composition limit, fit to density functional theory total energies, that allows
us to investigate the substitutional disorder using Monte Carlo simulations
augmented by multiple histogram analysis. We find that the low temperature
monoclinic Cm structure disorders through a pair of phase transitions, first
via a 3-state Potts-like transition to space group R3m, then via an Ising-like
transition to the experimentally observed R3(bar)m symmetry. The R3m and Cm
phases are electrically polarized, while the high temperature R3(bar)m phase is
nonpolar
Scaling of the specific heat in superfluid films
We study the specific heat of the model on lattices with (i.e. on lattices representing a film geometry) using the
Cluster Monte--Carlo method. In the --direction we apply Dirichlet boundary
conditions so that the order parameter in the top and bottom layers is zero. We
find that our results for the specific heat of various thickness size
collapse on the same universal scaling function. The extracted scaling function
of the specific heat is in good agreement with the experimentally determined
universal scaling function using no free parameters.Comment: 4 pages, uuencoded compressed PostScrip
Quality predictors of abdominal fetal electrocardiography recording in antenatal ambulatory and bedside settings
Background: Fetal electrocardiography using an abdominal monitor (Monica AN24â„¢) could increase the diagnostic use of fetal heart rate (fHR) variability measurements. However, signal quality may depend on factors such as maternal physical activity, posture, and bedside versus ambulatory setting. Methods: Sixty-three healthy women wore the monitor at home and 42 women during a hospital stay. All women underwent a posture experiment, and all home and 13 hospital participants wore the monitor during daytime and nighttime. The success rate (SR) of fHR detection was analyzed in relation to maternal physical activity, posture, daytime versus nighttime, and other maternal and fetal predictors. Results: Ambulatorily, the SR was 86.8% for nighttime and 40.2% for daytime. The low daytime SR was largely due to effects of maternal physical activity and posture. The in-hospital SR was lower during nighttime (71.1%) and similar during daytime (43.3%). SR was related to gestational age, but not affected by pre-pregnancy and current body mass index or fetal growth restriction. Conclusions: The success of beat-to-beat fHR detection strongly depends on the home/hospital setting and predictors such as time of recording, activity levels, and maternal posture. Its clinical utility may be limited in periods of unsupervised recording with physical activity or posture shifts
The elephant in the room of density functional theory calculations
Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζquality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζbasis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
The influence of the magnetic moment interaction of nucleons on
nucleon-deuteron elastic scattering and breakup cross sections and on elastic
scattering polarization observables has been studied. Among the numerous
elastic scattering observables only the vector analyzing powers were found to
show a significant effect, and of opposite sign for the proton-deuteron and
neutron-deuteron systems. This finding results in an even larger discrepancy
than the one previously established between neutron-deuteron data and
theoretical calculations. For the breakup reaction the largest effect was found
for the final-state-interaction cross sections. The consequences of this
observation on previous determinations of the ^1S_0 scattering lengths from
breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur
The three-nucleon bound state using realistic potential models
The bound states of H and He have been calculated using the Argonne
plus the Urbana three-nucleon potential. The isospin state
have been included in the calculations as well as the - mass difference.
The H-He mass difference has been evaluated through the charge
dependent terms explicitly included in the two-body potential. The calculations
have been performed using two different methods: the solution of the Faddeev
equations in momentum space and the expansion on the correlated hyperspherical
harmonic basis. The results are in agreement within 0.1% and can be used as
benchmark tests. Results for the CD-Bonn interaction are also presented. It is
shown that the H and He binding energy difference can be predicted
model independently.Comment: 5 pages REVTeX 4, 1 figures, 6 table
- …