16 research outputs found
The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease
Krogh’s capillary recruitment hypothesis, 100 years on: Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise?
In 1919, August Krogh published his seminal work on skeletal muscle oxygenation. Krogh’s observations indicated that muscle capillary diameter is actively regulated, rather than a passive result of arterial blood flow regulation. Indeed, combining a mathematical model with the number of ink-filled capillaries he observed in muscle cross sections taken at different workloads, Krogh was able to account for muscle tissue’s remarkably efficient oxygen extraction during exercise in terms of passive diffusion from nearby capillaries. Krogh was awarded the 1920 Nobel Prize for his account of muscle oxygenation. Today, his observations are engrained in the notion of capillary recruitment: the opening of previously closed capillaries. While the binary distinction between “closed” and “open” was key to Krogh’s model argument, he did in fact report a continuum of capillary diameters, degrees of erythrocyte deformation, and perfusion states. Indeed, modern observations question the presence of closed muscle capillaries. We therefore examined whether changes in capillary flow patterns and hematocrit among open capillaries can account for oxygen extraction in muscle across orders-of-magnitude changes in blood flow. Our four-compartment model of oxygen extraction in muscle confirms this notion and provides a framework for quantifying the impact of changes in microvascular function on muscle oxygenation in health and disease. Our results underscore the importance of capillary function for oxygen extraction in muscle tissue as first proposed by Krogh. While Krogh’s model calculations still hold, our model predictions support that capillary recruitment can be viewed in the context of continuous, rather than binary, erythrocyte distributions among capillaries.NEW & NOTEWORTHY Oxygen extraction in working muscle is extremely efficient in view of single capillaries properties. The underlying mechanisms have been widely debated. Here, we develop a four-compartment model to quantify the influence of each of the hypothesized mechanisms on muscle oxygenation. Our results show that changes in capillary flow pattern and hematocrit can account for the high oxygen extraction observed in working muscle, while capillary recruitment is not required to account for these extraction properties.</jats:p
Modeling the measurement bias in interstitial glucose concentrations derived from microdialysis in skeletal muscle
The Effects of Capillary Transit Time Heterogeneity (<i>CTH</i>) on Brain Oxygenation
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity ( CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow ( CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. </jats:p
The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake
Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMR(glc)) is coupled with its oxygen consumption (CMRO(2)) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO(2)/CMR(glc) suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMR(glc). Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMR(glc) during functional activation by as much as 50%
The effects of capillary transit time heterogeneity (CTH) on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.
Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%
The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice
Capillary flow patterns are highly heterogeneous in the resting brain. During hyperemia, capillary transit-time heterogeneity (CTH) decreases, in proportion to blood's mean transit time (MTT) in passive, compliant microvascular networks. Previously, we found that functional activation reduces the CTH:MTT ratio, suggesting that additional homogenization takes place through active neurocapillary coupling mechanisms. Here, we examine changes in the CTH:MTT ratio during hypercapnic hyperemia in anesthetized mice (C57Bl/6NTac), expecting that homogenization is smaller than during functional hyperemia. We used an indicator-dilution technique and multiple capillary scans by two-photon microscopy to estimate CTH and MTT. During hypercapnia, MTT and CTH decreased as derived from indicator-dilution between artery and vein, as well as between arterioles and venules. The CTH:MTT ratio, however, increased. The same tendency was observed in the estimates from capillary scans. The parallel reductions of MTT and CTH are consistent with previous data. We speculate that the relative increase in CTH compared to MTT during hypercapnia represents either or both capillary constrictions and blood passage through functional thoroughfare channels. Intriguingly, hemodynamic responses to hypercapnia declined with cortical depth, opposite previous reports of hemodynamic responses to functional activation. Our findings support the role of CTH in cerebral flow-metabolism coupling during hyperemia. </jats:p
Disturbances in the control of capillary flow in an aged APPswe/PS1ΔE9 model of Alzheimer's disease
Cerebral Macro- and Microcirculation during Ephedrine <i>versus</i> Phenylephrine Treatment in Anesthetized Brain Tumor Patients: A Randomized Clinical Trial Using Magnetic Resonance Imaging
Background
This study compared ephedrine versus phenylephrine treatment on cerebral macro- and microcirculation, measured by cerebral blood flow, and capillary transit time heterogeneity, in anesthetized brain tumor patients. The hypothesis was that capillary transit time heterogeneity in selected brain regions is greater during phenylephrine than during ephedrine, thus reducing cerebral oxygen tension.
Methods
In this single-center, double-blinded, randomized clinical trial, 24 anesthetized brain tumor patients were randomly assigned to ephedrine or phenylephrine. Magnetic resonance imaging of peritumoral and contralateral hemispheres was performed before and during vasopressor infusion. The primary endpoint was between-group difference in capillary transit time heterogeneity. Secondary endpoints included changes in cerebral blood flow, estimated oxygen extraction fraction, and brain tissue oxygen tension.
Results
Data from 20 patients showed that mean (± SD) capillary transit time heterogeneity in the contralateral hemisphere increased during phenylephrine from 3.0 ± 0.5 to 3.2 ± 0.7 s and decreased during ephedrine from 3.1 ± 0.8 to 2.7 ± 0.7 s (difference phenylephrine versus difference ephedrine [95% CI], −0.6 [−0.9 to −0.2] s; P = 0.004). In the peritumoral region, the mean capillary transit time heterogeneity increased during phenylephrine from 4.1 ± 0.7 to 4.3 ± 0.8 s and decreased during ephedrine from 3.5 ± 0.9 to 3.3 ± 0.9 s (difference phenylephrine versus difference ephedrine [95%CI], −0.4[−0.9 to 0.1] s; P = 0.130). Cerebral blood flow (contralateral hemisphere ratio difference [95% CI], 0.3 [0.06 to 0.54]; P = 0.018; and peritumoral ratio difference [95% CI], 0.3 [0.06 to 0.54; P = 0.018) and estimated brain tissue oxygen tension (contralateral hemisphere ratio difference [95% CI], 0.34 [0.09 to 0.59]; P = 0.001; and peritumoral ratio difference [95% CI], 0.33 [0.09 to 0.57]; P = 0.010) were greater during ephedrine than phenylephrine in both regions.
Conclusions
Phenylephrine caused microcirculation in contralateral tissue, measured by the change in capillary transit time heterogeneity, to deteriorate compared with ephedrine, despite reaching similar mean arterial pressure endpoints. Ephedrine improved cerebral blood flow and tissue oxygenation in both brain regions and may be superior to phenylephrine in improving cerebral macro- and microscopic hemodynamics and oxygenation.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
</jats:sec
