4 research outputs found
Hypoxia and the antipredator behaviours of fishes
Hypoxia is a phenomenon occurring in marine coastal areas with increasing frequency. While hypoxia has been documented to affect fish activity and metabolism, recent evidence shows that hypoxia can also have a detrimental effect on various antipredator behaviours. Here, we review such evidence with a focus on the effect of hypoxia on fish escape responses, its modulation by aquatic surface respiration (ASR) and schooling behaviour. The main effect of hypoxia on escape behaviour was found in responsiveness and directionality. Locomotor performance in escapes was expected to be relatively independent of hypoxia, since escape responses are fuelled anaerobically. However, hypoxia decreased locomotor performance in some species (Mugilidae) although only in the absence of ASR in severe hypoxia. ASR allows fish to show higher escape performance than fish staying in the water column where hypoxia occurs. This situation provides a trade-off whereby fish may perform ASR in order to avoid the detrimental effects of hypoxia, although they would be subjected to higher exposure to aerial predation. As a result of this trade-off, fishes appear to minimize surfacing behaviour in the presence of aerial predators and to surface near shelters, where possible