1,022 research outputs found
Native fish in Northland: application of the River Values Assessment System (RiVAS and RiVAS+)
The fourth application of the River Values Assessment System (RiVAS and RiVAS+) for native fisheries value was made in the Northland region. Data for nine out of ten indicators were provided from modelling undertaken by Cawthron Institute using a variety of databases including the NZFFD and FENZ. The expert panel then checked the modelling results and adjusted where appropriate based on local knowledge, and it populated the Population Stronghold indicator. Of 27 river catchment/clusters evaluated, nine were considered of national significance, namely the Bay of
Islands North, Bay of Islands South, East Coast, Herekino, Hokianga, Mangamuka, Waihou, Waipoua and Wairoa. The Wairoa scored very poorly for all attributes other than presence of many at risk species. The remaining 18 are of regional significance. No river catchment/clusters were identified as being of local significance. The RIVAS+ identified work that can be done to reduce the inference on migratory fish movements caused by a barrier on the Waipoua River.This work was funded by Northland Regional Council and we gratefully acknowledge their
support
Native Birdlife in Hawke’s Bay: application of the river values assessment system (RiVAS and RiVAS+)
This report presents an application of the River Values Assessment System for existing value (RiVAS) and for potential value (RiVAS+) to native birdlife in the Hawkes Bay Region. A workshop was held in Napier on 3rd October 2011 to apply the method. This Hawkes Bay Region bird report needs to be read in conjunction with the method and with the first native bird application reports (see Hughey et al. 2010 and Gaze et al. 2010).Ministry of Science and Information, and Hawkes Bay Regional Counci
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector
The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino
detector under construction at the geographic South Pole. The dominant
population of neutrinos detected in IceCube is due to meson decay in cosmic-ray
air showers. These atmospheric neutrinos are relatively well-understood and
serve as a calibration and verification tool for the new detector. In 2006, the
detector was approximately 10% completed, and we report on data acquired from
the detector in this configuration. We observe an atmospheric neutrino signal
consistent with expectations, demonstrating that the IceCube detector is
capable of identifying neutrino events. In the first 137.4 days of livetime,
234 neutrino candidates were selected with an expectation of 211 +/-
76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Directional limits on persistent gravitational waves using LIGO S5 science data
The gravitational-wave (GW) sky may include nearby pointlike sources as well
as astrophysical and cosmological stochastic backgrounds. Since the relative
strength and angular distribution of the many possible sources of GWs are not
well constrained, searches for GW signals must be performed in a
model-independent way. To that end we perform two directional searches for
persistent GWs using data from the LIGO S5 science run: one optimized for
pointlike sources and one for arbitrary extended sources. The latter result is
the first of its kind. Finding no evidence to support the detection of GWs, we
present 90% confidence level (CL) upper-limit maps of GW strain power with
typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2
Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on
pointlike sources constitute a factor of 30 improvement over the previous best
limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain
from interesting targets including Sco X-1, SN1987A and the Galactic Center as
low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These
limits are the most constraining to date and constitute a factor of 5
improvement over the previous best limits.Comment: 10 pages, 4 figure
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
- …