947 research outputs found
Developing a preliminary recharge model of the Nile Basin to help interpret GRACE data
GRACE data provides a new and exciting opportunity to gain a direct and independent measure of water mass variation on a regional scale, but the data must be combined with hydrological modelling to indicate in which part of the water cycle the mass change has occurred. Processing GRACE data through a series of spectral filters indicates a seasonal variation to gravity mass (±0.005 mGal) thought to relate to the downstream movement of water in the catchment, and delayed storage from groundwater, following the wet season in the upper catchment.
To help interpret these data a groundwater recharge model was developed for the Nile Catchment using the model ZOODRM (a distributed modelling code for calculating spatial and temporal variations in groundwater recharge). ZOODRM was an appropriate model to use for this work, due to the lower data demands of the model, relative to other groundwater models, the ability of the model to use entirely remotely-sensed input data, and the added functionality of runoff routing. Rainfall (NOAA data) and ET data were sourced from the FEWS NET African Data Dissemination Service. Geological data was sourced from the digital geology map of the world, landuse data from the USGS and the DEM data from ESRI.
Initial model results indicate groundwater recharge across the basin of 0-4mma-1, with obvious considerable spatial variability. The results indicate the importance of groundwater in storing rainfall, and releasing it slowly throughout the year in different parts of the catchment. Only by modelling this process can GRACE data be reliably interpreted hydrologically. Despite only a qualitative interpretation of the GRACE data having been achieved within this preliminary study, the work has indicated that the ZOODRM model can be used with entirely remotely-sensed data, and that sufficient data exists for the Nile Basin to construct a plausible recharge model. Future work is now required to properly calibrate the model to enable closer comparison of the Nile GRACE data
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
Bioavailability, Antipsoriatic Efficacy and Tolerability of a New Light Cream with Mometasone Furoate 0.1%
Mometasone furoate, a potent glucocorticoid (class III) with a favorable benefit/risk ratio, has emerged as a standard medication for the treatment of inflammatory skin disorders. The purpose of the investigation presented here was to determine the noninferiority of a topical mometasone formulation, a light cream (O/W 60/40 emulsion) with mometasone furoate 0.1% (water content of 33%) versus marketed comparators. Using the vasoconstrictor assay, a strong blanching effect of the new cream (called Mometasone cream) comparable to that of a mometasone comparator, a fatty cream with mometasone furoate 0.1%, could be demonstrated. Thus, the topical bioavailability of the active ingredient mometasone furoate (0.1%) was regarded to be similar for Mometasone cream and the mometasone comparator. Using the psoriasis plaque test, a strong antipsoriatic effect comparable to that of the mometasone comparator was found for Mometasone cream after 12 days of occlusive treatment. A nearly identical reduction in the mean infiltrate thickness and similar mean AUC values were noted with both formulations confirmed by clinical assessment data. The noninferiority of Mometasone cream to its active comparator with re-spect to the AUC of change to baseline in infiltrate thickness was demonstrated. Both medications were well tolerated. Overall, Mometasone cream and the mometasone comparator showed similar efficacy and tolerability. Mometasone cream, in addition to its high potency and good tolerability, provides the properties of a light cream, which might make this new medication particularly suitable for application on acutely inflamed and sensitive skin. Copyright (C) 2012 S. Karger AG, Base
Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems
We present a general discussion of the techniques of destabilizing dark
states in laser-driven atoms with either a magnetic field or modulated laser
polarization. We show that the photon scattering rate is maximized at a
particular evolution rate of the dark state. We also find that the atomic
resonance curve is significantly broadened when the evolution rate is far from
this optimum value. These results are illustrated with detailed examples of
destabilizing dark states in some commonly-trapped ions and supported by
insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure
Effects of a balanced translocation between chromosomes 1 and 11 disrupting the DISC1 locus on white matter integrity
Objective
Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3).
Method
Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33).
Results
We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity.
Conclusions
We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis
Active region formation through the negative effective magnetic pressure instability
The negative effective magnetic pressure instability operates on scales
encompassing many turbulent eddies and is here discussed in connection with the
formation of active regions near the surface layers of the Sun. This
instability is related to the negative contribution of turbulence to the mean
magnetic pressure that causes the formation of large-scale magnetic structures.
For an isothermal layer, direct numerical simulations and mean-field
simulations of this phenomenon are shown to agree in many details in that their
onset occurs at the same depth. This depth increases with increasing field
strength, such that the maximum growth rate of this instability is independent
of the field strength, provided the magnetic structures are fully contained
within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity
and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes
Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2-fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades.
We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs).
Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs.
We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade
A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate
A new 3-node triangular hybrid displacement function Mindlin- Reissner plate element is developed. Firstly, the modified variational functional of complementary energy for Mindlin-Reissner plate, which is eventually expressed by a so-called displacement function F, is proposed. Secondly, the locking-free formulae of Timoshenko’s beam theory are chosen as the deflection, rotation, and shear strain along each element boundary. Thirdly, seven fundamental analytical solutions of the displacement function F are selected as the trial functions for the assumed resultant fields, so that the assumed resultant fields satisfy all governing equations in advance. Finally, the element stiffness matrix of the new element, denoted by HDF-P3-7β, is derived from the modified principle of complementary energy. Together with the diagonal inertia matrix of the 3-node triangular isoparametric element, the proposed element is also successfully generalized to the free vibration problems. Numerical results show that the proposed element exhibits overall remarkable performance in all benchmark problems, especially in the free vibration analyses
- …