1,060 research outputs found
The Lifelong Learning Institute in Chesterfield: Ten Years of Growing
Educational Objectives
1. To review changes in patterns of continuing learning and non-traditional education.
2. To profile membership and their interests in lifelong learning.
3. To highlight the development of the Lifelong Learning Institute of Chesterfield as a possible model for replication
Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results
A critical component of SVS displays is the appropriate presentation of terrain to the pilot. At the time of this study, the relationship between the complexity of the terrain presentation and resulting enhancements of pilot SA and pilot performance had been largely undefined. The terrain portrayal for SVS head-down displays (TP-HDD) simulation examined the effects of two primary elements of terrain portrayal on the primary flight display (PFD): variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec) to very closely spaced data (1 arc-sec). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay
Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results: Compilation of Pilot Transcripts
The Terrain Portrayal for Head-Down Displays (TP-HDD) simulation experiment addressed multiple objectives involving twelve display concepts (two baseline concepts without terrain and ten synthetic vision system (SVS) variations), four evaluation maneuvers (two en route and one approach maneuver, plus a rare-event scenario), and three pilot group classifications. The TP-HDD SVS simulation was conducted in the NASA Langley Research Center's (LaRC's) General Aviation WorkStation (GAWS) facility. The results from this simulation establish the relationship between terrain portrayal fidelity and pilot situation awareness, workload, stress, and performance and are published in the NASA TP entitled Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results. This is a collection of pilot comments during each run of the TP-HDD simulation experiment. These comments are not the full transcripts, but a condensed version where only the salient remarks that applied to the scenario, the maneuver, or the actual research itself were compiled
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview
The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future
Recent Advancements in Modeling and Simulation of Entry Systems at NASA
This paper describes recent development of modeling and simulation technologies for entry systems in support of NASA's exploration missions. Mission-tailored research and development in modeling of entry systems occurs across the Agency (e.g., within the Orion and Mars 2020 Programs), however the aim of this paper is to discuss the broad, cross-mission research conducted by NASA's Entry Systems Modeling (ESM) Project, which serves as the Agency's only concerted effort toward advancing entry systems across a range of technical disciplines. Technology development in ESM is organized and prioritized from a system-level perspective, resulting in four broad technical areas of investment: (1) Predictive material modeling, (2) Shock layer kinetics and radiation, (3) Computational and experimental aerosciences, and (4) Guidance, navigation, and control. Investments in thermal protection material modeling are geared toward high-fidelity, predictive models capable of handling complex structures, with an eye toward optimizing design performance and quantifying thermal protection system reliability. New computational tools have been developed to characterize material properties and behavior at the microstructural level, and experimental techniques (molecular beam scattering, micro-computed tomography, among others) have been developed to measure material kinetics, morphology, and other parameters needed to inform and validate detailed simulations. Advancements have also been made in macrostructural simulation capability to enable 3-D system-scale calculations of material response with complex topological features, including differential recession of tile gaps. Research and development in the area of shock layer kinetics has focused on air and CO2-based atmospheres. Capacity and capability of the NASA Ames Electric Arc Shock Tube (EAST) have been expanded in recent years and analysis of resulting data has led to several improvements in kinetic models, while simultaneously reducing uncertainties associated with radiative heat transfer predictions. First-principles calculations of fundamental kinetic, thermodynamic, and transport data, along with state-specific models for non-equilibrium flow regimes, have also yielded new insights and have the potential to vastly improve model fidelity. Aerosciences is a very broad area of interest in entry systems, yet a number of important challenges are being addressed: Coupled fluid-structure simulations of parachute inflation and dynamics; Experimental and computational studies of vehicle dynamics; Multi-phase flow with dust particles to simulate entry environments at Mars during dust storms; Studies of roughness-induced heating augmentation relevant to tiled and woven thermal protection systems; and Advanced numerical methods to optimize computational analyses for desired accuracy versus cost. Guidance and control in the context of entry systems has focused on development of methods for multi-axis control (i.e. pitch and yaw, rather than bank angle alone) of spacecraft during entry and descent. With precision landing requirements driven by Mars human exploration goals, recent efforts have yielded 6-DOF models of multi-axis control with propulsive descent of both inflatable and rigid ellipsled-like architectures
Subsonic and Transonic Wind Tunnel Testing of Two Inflatable Aerodynamic Decelerators
Two inflatable aerodynamic decelerator designs were tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center: a tension cone and an isotensoid. The tension cone consists of a flexible tension shell attached to a torus and the isotensoid employs a ram-air inflated envelope. Tests were conducted at Mach numbers from 0.3 to 1.08 and Reynolds numbers from 0.59 to 2.46 million. The main objective of these tests was to obtain static aerodynamic coefficients at subsonic and transonic speeds to supplement supersonic aerodynamic data for these same two designs. The axial force coefficients of both designs increased smoothly from subsonic through transonic Mach numbers. Dynamic data show significant oscillation of the tension cone and minimal oscillation of the isotensoid. The transonic and subsonic data will be used to assemble an inflatable decelerator aerodynamic database for use in computational analyses and system studies
Aerodynamic and Aeroelastic Characteristics of a Tension Cone Inflatable Aerodynamic Decelerator
The supersonic aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator were investigated by wind tunnel testing. Two sets of tests were conducted: one using rigid models and another using textile models. Tests using rigid models were conducted over a Mach number range from 1.65 to 4.5 at angles of attack from -12 to 20 degrees. The axial, normal, and pitching moment coefficients were found to be insensitive to Mach number over the tested range. The axial force coefficient was nearly constant (C(sub A) = 1.45 +/- 0.05) with respect to angle of attack. Both the normal and pitching moment coefficients were nearly linear with respect to angle of attack. The pitching moment coefficient showed the model to be statically stable about the reference point. Schlieren images and video showed a detached bow shock with no evidence of large regions of separated flow and/or embedded shocks at all Mach numbers investigated. Qualitatively similar static aerodynamic coefficient and flow visualization results were obtained using textile models at a Mach number of 2.5. Using inflatable textile models the torus pressure required to maintain the model in the fully-inflated configuration was determined. This pressure was found to be sensitive to details in the structural configuration of the inflatable models. Additional tests included surface pressure measurements on rigid models and deployment and inflation tests with inflatable models
Social, environmental and psychological factors associated with objective physical activity levels in the over 65s
Objective: To assess physical activity levels objectively using accelerometers in community dwelling over 65 s and to examine associations with health, social, environmental and psychological factors. Design: Cross sectional survey. Setting: 17 general practices in Scotland, United Kingdom. Participants: Random sampling of over 65 s registered with the practices in four strata young-old (65–80 years), old-old (over 80 years), more affluent and less affluent groups. Main Outcome Measures: Accelerometry counts of activity per day. Associations between activity and Theory of Planned Behaviour variables, the physical environment, health, wellbeing and demographic variables were examined with multiple regression analysis and multilevel modelling. Results: 547 older people (mean (SD) age 79(8) years, 54% female) were analysed representing 94% of those surveyed. Accelerometry counts were highest in the affluent younger group, followed by the deprived younger group, with lowest levels in the deprived over 80 s group. Multiple regression analysis showed that lower age, higher perceived behavioural control, the physical function subscale of SF-36, and having someone nearby to turn to were all independently associated with higher physical activity levels (R2 = 0.32). In addition, hours of sunshine were independently significantly associated with greater physical activity in a multilevel model. Conclusions: Other than age and hours of sunlight, the variables identified are modifiable, and provide a strong basis for the future development of novel multidimensional interventions aimed at increasing activity participation in later life.Publisher PDFPeer reviewe
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
- …