102 research outputs found

    Electronic structure and magnetism of equiatomic FeN

    Full text link
    In order to investigate the phase stability of equiatomic FeN compounds and the structure-dependent magnetic properties, the electronic structure and total energy of FeN with NaCl, ZnS and CsCl structures and various magnetic configurations are calculated using the first-principles TB-LMTO-ASA method. Among all the FeN phases considered, the antiferromagnetic NaCl structure with q=(00pi) is found to have the lowest energy at the theoretical equilibrium volume. However, the FM NaCl phase lies only 1mRyd higher. The estimated equilibrium lattice constant for nonmagnetic ZnS-type FeN agrees quite well with the experimental value, but for the AFM NaCl phase the estimated value is 6.7% smaller than that observed experimentally. For ZnS-type FeN, metastable magnetic states are found for volumes larger than the equilibrium value. On the basis of an analysis of the atom- and orbital-projected density of states and orbital-projected Crystal Orbital Hamilton Population, the iron-nitrogen interactions in NM ZnS, AFM NaCl and FM CsCl structures are discussed. The leading Fe-N interactions is due to the d-p iron-nitrogen hybridization, while considerable s-p and p-p hybridizations are also observed in all three phases. The iron magnetic moment in FeN is found to be highly sensitive to the nearest-neighboring Fe-N distance. In particular, the magnetic moment shows an abrupt drop from a value of about 2 muB to zero with the reduction of the Fe-N distance for the ZnS and CsCl structures.Comment: 12 pages, 6 figure

    A germanate transparent conductive oxide

    Get PDF
    Wide bandgap conductors such as In2O3 and ZnO are used as transparent conducting oxides (TCOs). To date, TCOs are realized using post transition metal cations with largely spread s-orbitals such as In3+, Sn4+, Zn2+ and Cd2+. On the other hand, no good electronic conductor has been realized in oxides of Al, Si and Ge. Here we report the conversion of an oxide of Ge into a good electronic conductor by employing the concept of superdegeneracy. We find that cubic SrGeO3, synthesized under high pressure, displays a direct bandgap of 3.5 eV, a carrier mobility of 12 cm2(Vs)−1, and conductivities of 3 Scm−1 (DC) and 400 Scm−1 (optical conductivity). This is the first Ge-based electronic conductive oxide, and expands the family of TCOs from ionic oxides to covalent oxides

    Analysis of Bonding between Conjugated Organic Molecules and Noble Metal Surfaces Using Orbital Overlap Populations

    Get PDF
    The electronic structure of metal−organic interfaces is of paramount importance for the properties of organic electronic and single-molecule devices. Here, we use so-called orbital overlap populations derived from slab-type band-structure calculations to analyze the covalent contribution to the bonding between an adsorbate layer and a metal. Using two prototypical molecules, the strong acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) on Ag(111) and the strong donor 1H,1′H-[4,4′]bipyridinylidene (HV0) on Au(111), we present overlap populations as particularly versatile tools for describing the metal−organic interaction. Going beyond traditional approaches, in which overlap populations are represented in an atomic orbital basis, we also explore the use of a molecular orbital basis to gain significant additional insight. On the basis of the derived quantities, it is possible to identify the parts of the molecules responsible for the bonding and to analyze which of the molecular orbitals and metal bands most strongly contribute to the interaction and where on the energy scale they interact in bonding or antibonding fashion

    Integration of basal topographic cues and apical shear stress in vascular endothelial cells

    No full text
    International audienceIn vivo, vascular endothelial cells (VECs) are anchored to the underlying stroma through a specialization of the extracellular matrix, the basement membrane (BM) which provides a variety of substratum associated biophysical cues that have been shown to regulate fundamental VEC behaviors. VEC function and homeostasis are also influenced by hemodynamic cues applied to their apical surface. How the combination of these biophysical cues impacts fundamental VEC behavior remains poorly studied. In the present study, we investigated the impact of providing biophysical cues simultaneously to the basal and apical surfaces of human aortic endothelial cells (HAECs). Anisotropically ordered patterned surfaces of alternating ridges and grooves and isotropic holed surfaces of varying pitch (pitch = ridge or hole width + intervening groove or planar regions) were fabricated and seeded with HAECs. The cells were then subjected to a steady shear stress of 20 dyne/cm(2) applied either parallel or perpendicular to the direction of the ridge/groove topography. HAECs subjected to flow parallel to the ridge/groove topography exhibited protagonistic effects of the two stimuli on cellular orientation and elongation. In contrast, flow perpendicular to the substrate topography resulted in largely antagonistic effects. Interestingly, the behavior depended on the shape and size of the topographic features. HAECs exhibited a response that was less influenced by the substratum and primarily driven by flow on isotropically ordered holed surfaces of identical pitch to the anistropically ordered surfaces of alternating ridges and grooves. Simultaneous presentation of biophysical cues to the basal and apical aspects of cells also influenced nuclear orientation and elongation: however, the extent of nuclear realignment was more modest in comparison to cellular realignment regardless of the surface order of topographic features. Flow-induced HAEC migration was also influenced by the ridge/groove surface topographic features with significantly altered migration direction and increased migration tortuosity when flow was oriented perpendicular to the topography; this effect was also pitch-dependent. The present findings provide valuable insight into the interaction of biologically relevant apical and basal biophysical cues in regulating cellular behavior and promise to inform improved prosthetic design. (c) 2012 Published by Elsevier Ltd
    • …
    corecore