7 research outputs found

    Pudding: Private User Discovery in Anonymity Networks

    Full text link
    Anonymity networks allow messaging with metadata privacy, providing better privacy than popular encrypted messaging applications. However, contacting a user on an anonymity network currently requires knowing their public key or similar high-entropy information, as these systems lack a privacy-preserving mechanism for contacting a user via a short, human-readable username. Previous research suggests that this is a barrier to widespread adoption. In this paper we propose Pudding, a novel private user discovery protocol that allows a user to be contacted on an anonymity network knowing only their email address. Our protocol hides contact relationships between users, prevents impersonation, and conceals which usernames are registered on the network. Pudding is Byzantine fault tolerant, remaining available and secure as long as less than one third of servers are crashed, unavailable, or malicious. It can be deployed on Loopix and Nym without changes to the underlying anonymity network protocol, and it supports mobile devices with intermittent network connectivity. We demonstrate the practicality of Pudding with a prototype using the Nym anonymity network. We also formally define the security and privacy goals of our protocol and conduct a thorough analysis to assess its compliance with these definitions.Comment: Accepted at the IEEE Symposium on Security and Privacy (S&P) 202

    Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

    Get PDF
    Traditional key stretching lacks a strict time guarantee due to the ease of parallelized password guessing by attackers. This paper introduces Sloth, a key stretching method leveraging the Secure Element (SE) commonly found in modern smartphones to provide a strict rate limit on password guessing. While this would be straightforward with full access to the SE, Android and iOS only provide a very limited API. Sloth utilizes the existing developer SE API and novel cryptographic constructions to build an effective rate-limit for password guessing on recent Android and iOS devices. Our approach ensures robust security even for short, randomly-generated, six-character alpha-numeric passwords against adversaries with virtually unlimited computing resources. Our solution is compatible with approximately 96% of iPhones and 45% of Android phones and Sloth seamlessly integrates without device or OS modifications, making it immediately usable by app developers today. We formally define the security of Sloth and evaluate its performance on various devices. Finally, we present HiddenSloth, a deniable encryption scheme, leveraging Sloth and the SE to withstand multi-snapshot adversaries

    3D printing: A qualitative assessment of applications, recent trends and the technology's future potential

    Full text link
    Additive manufacturing (AM) or 3D printing is currently one of the most discussed emerging technologies coming to market with a potentially disruptive power. The terms additive manufacturing (AM) and 3D printing describe production processes in which a solid 3D structure is produced layer by layer by the deposition of suitable materials via an additive manufacturing machine. After around 30 years in the making, 3D printing is about to move from being an industrial rapid prototyping technique to becoming a mainstream manufacturing procedure used by industry and consumers alike. However, the question in which area and to which extent this emerging technology will disrupt state of the art practices is far from trivial. The goal of this report on behalf of the Expert Commission of Research and Innovation is threefold: First, to sketch the emerging 3D printing landscape, explore key trends and the technology's potential. Second, to shed light on 3D printing market dynamics and framework conditions both in Germany and in other countries. Third, to translate the findings into recommendations that can serve as a basis for the Expert Commission's policy report

    Key Agreement for Decentralized Secure Group Messaging with Strong Security Guarantees

    Get PDF
    Secure group messaging protocols, providing end-to-end encryption for group communication, need to handle mobile devices frequently being offline, group members being added or removed, and the possibility of device compromises during long-lived chat sessions. Existing work targets a centralized network model in which all messages are routed through a single server, which is trusted to provide a consistent total order on updates to the group state. In this paper we adapt secure group messaging for decentralized networks that have no central authority. Servers may still optionally be used, but they are trusted less. We define decentralized continuous group key agreement (DCGKA), a new cryptographic primitive encompassing the core of a decentralized secure group messaging protocol; we give a practical construction of a DCGKA protocol and prove its security; and we describe how to construct a full messaging protocol from DCGKA. In the face of device compromise our protocol achieves forward secrecy and post-compromise security. We evaluate the performance of a prototype implementation, and demonstrate that our protocol has practical efficiency

    CoverDrop: Blowing the Whistle Through A News App

    Get PDF
    Whistleblowing is hazardous in a world of pervasive surveillance, yet many leading newspapers expect sources to contact them with methods that are either insecure or barely usable. In an attempt to do better, we conducted two workshops with British news organisations and surveyed whistleblowing options and guidelines at major media outlets. We concluded that the soft spot is a system for initial contact and trust establishment between sources and reporters. CoverDrop is a two-way, secure system to do this. We support secure messaging within a news app, so that all its other users provide cover traffic, which we channel through a threshold mix instantiated in a Trusted Execution Environment within the news organisation. CoverDrop is designed to resist a powerful global adversary with the ability to issue warrants against infrastructure providers, yet it can easily be integrated into existing infrastructure. We present the results from our workshops, describe CoverDrop's design and demonstrate its security and performance
    corecore