3 research outputs found
Project HOME (Hydroponic Operations for Mars Exploration)
This research project is focused on providing future astronauts ways to grow a complete diet on a planet that does not receive as much sunlight as Earth does. We evaluated a deep-water culture indoor hydroponics system to grow Moringa Oleifera, a nutrient- and antioxidant-rich plant with leaves containing all nine essential amino acids. After initial aquaponics growth and 3 prior harvests, the lighting intensity was set to 590 W/m^2 in a twelve hour on/off cycle. This simulates an ambient light collection and reflection system on Mars. 32 plants were harvested 17 times over a 9 month period at regular intervals, when plant heights reached an average of 0.9 m and we found consumable leaf yield averaged 0.18g per plant, per day. Data suggests using Moringa Oleifera as a perennial hydroponic crop is possible under reduced illumination, and is a candidate food source for Mars explorers. Preliminary research has expanded to utilizing natural light, additional plants, three more hydroponic systems, and solar power. Currently, a solar powered 8x12ft greenhouse is being used to hydroponically grow Goji Berries, Moringa Oleifera, Bamboo, Kale, Chia and Sweet Potatoes. Combined, these foods contain a complete set of nutrients needed for a balanced human diet. The greenhouse and solar panels receive 590 W/m^2 by utilizing shade cloths. In conclusion, the project demonstrates that astronauts will have great potential in future missions to Mars to maximize the growth of superfoods using natural light, with a focus on a hydroponics system as the preferred farming method for space
Project HOME Hydroponic Operations for Mars Exploration
This report considers the challenges NASA, SpaceX, and other private companies will face in the approaching two decades when sending astronauts on missions to Mars. The longest exploration is planned to take place in the 2030\u27s, sending a crew of, at minimum, four astronauts to Mars for a year of research. The research conducted is assisting space exploration companies’ with ways to grow a complete diet on a planet that does not receive enough sunlight. Agriculture in enclosed and buried structures on Mars will enable astronauts to conduct extended surface exploration missions. We evaluated a deep-water culture indoor hydroponics system to grow Moringa oleifera (M. Oleifera), a nutrient- and antioxidant-rich plant with leaves containing all nine essential amino acids. After initial aquaponics growth and 3 prior harvests, the lighting intensity was set to 590 W/m^2 in a twelve hour on/off cycle, in normal indoor atmosphere. This simulates an ambient light collection and reflection system on Mars illuminating an insulated, pressurized underground chamber for agriculture. All plants (N = 32) were harvested 17 times over a 9 month period at regular intervals, when plant heights reached an average of 0.9 m. Consumable leaf yield averaged 0.18 dry g per plant per day. Data suggests that M. Oleifera as a perennial hydroponic crop is possible under reduced illumination, and is a candidate food source for Mars explorers. Preliminary research has expanded to utilizing natural light, five additional plants, three more hydroponic systems, and greenhouse ran entirely by solar power. Currently a solar powered eight by twelve foot greenhouse is being used to hydroponically grow goji berries, M. Oleifera, bamboo, kale, chia, and sweet potatoes. When these foods are combined with each other they contain a complete necessary set of amino acids, vitamins, minerals, fiber, carbohydrates, and nutrients for a balanced human diet. The plants receive 590 W/m^2 by utilizing a shade cloth over the entire greenhouse and the solar panels. In conclusion, the report states that NASA, and alike companies, will obtain valuable stepping stones in future missions to Mars by maximizing the growth of superfoods with utilization of natural light, and a focus on a hydroponics system as the farming method for space
Project HOME
This research project is focused on providing future astronauts ways to grow a complete diet on a planet that does not receive as much sunlight as Earth does. We evaluated a deep-water culture indoor hydroponics system to grow Moringa Oleifera, a nutrient- and antioxidant-rich plant with leaves containing all nine essential amino acids. After initial aquaponics growth and 3 prior harvests, the lighting intensity was set to 590 W/m^2 in a twelve hour on/off cycle. This simulates an ambient light collection and reflection system on Mars. 32 plants were harvested 17 times over a 9 month period at regular intervals, when plant heights reached an average of 0.9 m and we found consumable leaf yield averaged 0.18g per plant, per day. Data suggests using Moringa Oleifera as a perennial hydroponic crop is possible under reduced illumination, and is a candidate food source for Mars explorers. Preliminary research has expanded to utilizing natural light, additional plants, three more hydroponic systems, and solar power. Currently, a solar powered 8x12ft greenhouse is being used to hydroponically grow Goji Berries, Moringa Oleifera, Bamboo, Kale, Chia, and Sweet Potatoes. Combined, these foods contain a complete set of nutrients needed for a balanced human diet. The greenhouse and solar panels receive 590 W/m^2 by utilizing shade cloths. In conclusion, the project demonstrates that astronauts will have great potential in future missions to Mars to maximize the growth of superfoods using natural light, with a focus on a hydroponics system as the preferred farming method for space