1,645 research outputs found
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps
We apply a previously developed Gibbs sampling framework to the foreground
corrected 3-yr WMAP polarization data and compute the power spectrum and
residual foreground template amplitude posterior distributions. We first
analyze the co-added Q- and V-band data, and compare our results to the
likelihood code published by the WMAP team. We find good agreement, and thus
verify the numerics and data processing steps of both approaches. However, we
also analyze the Q- and V-bands separately, allowing for non-zero EB
cross-correlations and including two individual foreground template amplitudes
tracing synchrotron and dust emission. In these analyses, we find tentative
evidence of systematics: The foreground tracers correlate with each of the Q-
and V-band sky maps individually, although not with the co-added QV map; there
is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and
finally, when relaxing the constraints on EB and BB, noticeable differences are
observed between the marginalized band powers in the Q- and V-bands. Further
studies of these features are imperative, given the importance of the low-l EE
spectrum on the optical depth of reionization tau and the spectral index of
scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
Gravitational Lensing Statistics as a Probe of Dark Energy
By using the comoving distance, we derive an analytic expression for the
optical depth of gravitational lensing, which depends on the redshift to the
source and the cosmological model characterized by the cosmic mass density
parameter , the dark energy density parameter and its
equation of state . It is shown that, the larger the
dark energy density is and the more negative its pressure is, the higher the
gravitational lensing probability is. This fact can provide an independent
constraint for dark energy.Comment: 9 pages, 2 figure
Optimal search strategies for hidden targets
What is the fastest way of finding a randomly hidden target? This question of
general relevance is of vital importance for foraging animals. Experimental
observations reveal that the search behaviour of foragers is generally
intermittent: active search phases randomly alternate with phases of fast
ballistic motion. In this letter, we study the efficiency of this type of two
states search strategies, by calculating analytically the mean first passage
time at the target. We model the perception mecanism involved in the active
search phase by a diffusive process. In this framework, we show that the search
strategy is optimal when the average duration of "motion phases" varies like
the power either 3/5 or 2/3 of the average duration of "search phases",
depending on the regime. This scaling accounts for experimental data over a
wide range of species, which suggests that the kinetics of search trajectories
is a determining factor optimized by foragers and that the perception activity
is adequately described by a diffusion process.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results
Various astronomical observations have been consistently making a strong case
for the existence of a component of dark energy with negative pressure in the
universe. It is now necessary to take the dark energy component(s) into account
in gravitational lensing statistics and other cosmological tests. By using the
comoving distance we derive analytic but simple expressions for the optical
depth of multiple image, the expected value of image separation and the
probability distribution of image separation caused by an assemble of singular
isothermal spheres in general FRW cosmological models with dark energy
component(s). We also present the kinematical and dynamical properties of these
kinds of cosmological models and calculate the age of the universe and the
distance measures, which are often used in classical cosmological tests. In
some cases we are able to give formulae that are simpler than those found
elsewhere in the literature, which could make the cosmological tests for dark
energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil
Effects of environmental variables on invasive amphibian activity: using model selection on quantiles for counts
Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity
Recommended from our members
Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2
An extensive set of carbonyl sulfide (OCS) observations were made as part of the NASA Intercontinental Chemical Transport Experiment-North America (INTEX-NA) study, flown from 1 July to 14 August 2004 mostly over the eastern United States and Canada. These data show that summertime OCS mixing ratios at low altitude were dominated by surface drawdown and were highly correlated with CO2. Although local plumes were observed on some low-altitude flight legs, anthropogenic OCS sources were small compared to this sink. These INTEX-NA observations were in marked contrast to the early springtime 2001 Transport and Chemical Evolution over the Pacific experiment, which sampled Asian outflow dominated by anthropogenic OCS emissions. To test the gridded OCS fluxes used in past models, the INTEX-NA observations were combined with the sulfur transport Eulerian model (STEM) regional atmospheric chemistry model for a top-down assessment of bottom-up OCS surface fluxes for North America. Initial STEM results suggest that the modeled fluxes underestimate the OCS plant sink by more than 200%. Copyright 2008 by the American Geophysical Union
A Markov Chain Monte Carlo Algorithm for analysis of low signal-to-noise CMB data
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the
low signal-to-noise regime. This method builds on and complements the
previously described CMB Gibbs sampler, and effectively solves the low
signal-to-noise inefficiency problem of the direct Gibbs sampler. The new
algorithm is a simple Metropolis-Hastings sampler with a general proposal rule
for the power spectrum, C_l, followed by a particular deterministic rescaling
operation of the sky signal. The acceptance probability for this joint move
depends on the sky map only through the difference of chi-squared between the
original and proposed sky sample, which is close to unity in the low
signal-to-noise regime. The algorithm is completed by alternating this move
with a standard Gibbs move. Together, these two proposals constitute a
computationally efficient algorithm for mapping out the full joint CMB
posterior, both in the high and low signal-to-noise regimes.Comment: Submitted to Ap
A re-analysis of the three-year WMAP temperature power spectrum and likelihood
We analyze the three-year WMAP temperature anisotropy data seeking to confirm
the power spectrum and likelihoods published by the WMAP team. We apply five
independent implementations of four algorithms to the power spectrum estimation
and two implementations to the parameter estimation. Our single most important
result is that we broadly confirm the WMAP power spectrum and analysis. Still,
we do find two small but potentially important discrepancies: On large angular
scales there is a small power excess in the WMAP spectrum (5-10% at l<~30)
primarily due to likelihood approximation issues between 13 <= l <~30. On small
angular scales there is a systematic difference between the V- and W-band
spectra (few percent at l>~300). Recently, the latter discrepancy was explained
by Huffenberger et al. (2006) in terms of over-subtraction of unresolved point
sources. As far as the low-l bias is concerned, most parameters are affected by
a few tenths of a sigma. The most important effect is seen in n_s. For the
combination of WMAP, Acbar and BOOMERanG, the significance of n_s =/ 1 drops
from ~2.7 sigma to ~2.3 sigma when correcting for this bias. We propose a few
simple improvements to the low-l WMAP likelihood code, and introduce two
important extensions to the Gibbs sampling method that allows for proper
sampling of the low signal-to-noise regime. Finally, we make the products from
the Gibbs sampling analysis publically available, thereby providing a fast and
simple route to the exact likelihood without the need of expensive matrix
inversions.Comment: 14 pages, 7 figures. Accepted for publication in ApJ. Numerical
results unchanged, but interpretation sharpened: Likelihood approximation
issues at l=13-30 far more important than potential foreground issues at l <=
12. Gibbs products (spectrum and sky samples, and "easy-to-use" likelihood
module) available from http://www.astro.uio.no/~hke/ under "Research
Bromine measurements in ozone depleted air over the Arctic Ocean
In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere
- …