26 research outputs found
Recommended from our members
Why is China's wind power generation not living up to its potential?
Following a decade of unprecedented investment, China now has the world's largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors. We apply this framework to a novel dataset of virtually all wind farms installed in China and the United States through the end of 2013. We first estimate the wind sector's technical potential using a methodology that produces consistent estimates for both countries. We compare this potential to actual performance and find that Chinese wind farms generated electricity at 37%–45% of their annual technical potential during 2006–2013 compared to 54%–61% in the United States. Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China's wind power expansion covered extensively in the literature. However, our findings show that China's underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms. This suggests that besides addressing grid connection delays and curtailment, China will also need policy measures to address turbine siting and technology choices to achieve its national goals and increase utilization up to US levels
Comparing nuclear power trajectories in Germany and the UK: from ‘regimes' to ‘democracies’ in sociotechnical transitions and Discontinuities
This paper focuses on arguably the single most striking contrast in contemporary major energy politics in Europe (and even the developed world as a whole): the starkly differing civil nuclear policies of Germany and the UK. Germany is seeking entirely to phase out nuclear power by 2022. Yet the UK advocates a ‘nuclear renaissance’, promoting the most ambitious new nuclear construction programme in Western Europe.Here,this paper poses a simple yet quite fundamental question: what are the particular divergent conditions most strongly implicated in the contrasting developments in these two countries. With nuclear playing such an iconic role in historical discussions over technological continuity and transformation, answering this may assist in wider understandings of sociotechnical incumbency and discontinuity in the burgeoning field of‘sustainability transitions’. To this end, an ‘abductive’ approach is taken: deploying nine potentially relevant criteria for understanding the different directions pursued in Germany and the UK. Together constituted by 30 parameters spanning literatures related to socio-technical regimes in general as well as nuclear technology in particular, the criteria are divided into those that are ‘internal’ and ‘external’ to the ‘focal regime configuration’ of nuclear power and associated ‘challenger technologies’ like renewables.
It is ‘internal’ criteria that are emphasised in conventional sociotechnical regime theory, with ‘external’ criteria relatively less well explored. Asking under each criterion whether attempted discontinuation of nuclear power would be more likely in Germany or the UK, a clear picture emerges. ‘Internal’ criteria suggest attempted nuclear discontinuation should be more likely in the UK than in Germany– the reverse of what is occurring.
‘External’ criteria are more aligned with observed dynamics –especially those relating to military nuclear commitments and broader ‘qualities of democracy’. Despite many differences of framing concerning exactly what constitutes ‘democracy’, a rich political science literature on this point is unanimous in characterising Germany more positively than the UK. Although based only on a single case,a potentially important question is nonetheless raised as to whether sociotechnical regime theory might usefully give greater attention to the general importance of various aspects of democracy in constituting conditions for significant technological discontinuities and transformations. If so, the policy implications are significant. A number of important areas are identified for future research, including the roles of diverse understandings and specific aspects of democracy and the particular relevance of military nuclear commitments– whose under-discussion in civil nuclear policy literatures raises its own questions of democratic accountability
The Governance of Global Innovation Systems: Putting Knowledge in Context
Technological innovation increasingly depends on multiscalar actor networks and institutions. However, the developers of many conceptual frameworks explaining innovation success have paid only limited attention to this new reality, due to their focus on regions and countries as agents that shape innovation governance and as containers that provide institutional conditions for innovation success. In particular, innovation systems literature has been criticized in this respect. In the present chapter, we refer to the recently formulated Global Innovation Systems approach, which enables researchers to capture the emergence of system resources across spatial scales. With this framework, we emphasize that beyond the focus on knowledge generation processes, a better understanding of valuation processes is necessary to guide governance structures for generating new technologies and products. This is particularly true for sectors that are oriented towards confronting grand challenges, such as cleantech industries
Exploring the role of instrument design and instrument interaction for eco-innovation: a survey-based analysis of renewable energy innovation in Germany
Empirical research on eco-innovation has produced a substantive body of literature on the relevance of regulation for stimulating such innovation. Much of this work on the role of policy for eco-innovation relies on econometric analyses of company survey data. In this regard, the eco-innovation module introduced in 2008/9 in the Community Innova-tion Survey serves as an important data source that has helped improve our under-standing of the role of environmental and innovation policy for eco-innovation in the Eu-ropean Union (EU). However, so far, this data source has provided only limited oppor-tunities to generate insights into the role of instrument design and instrument interaction for eco-innovation. In this chapter, we present a first attempt to measure such aspects in a company innovation survey based on the example of renewable energy innovation in Germany. In particular, we explore to what extent the design of the German Renewa-ble Energy Sources Act (and the interaction of its feed-in tariffs with the EU emissions trading system) correlates with innovation in renewable power generation technologies. We find instrument design features but not instrument type to be related to eco-innovation. In addition, our exploratory study provides evidence for an interaction effect between climate policy and renewables support policy. Based on these findings, we discuss implications for future research on the role of policy in eco-innovation
Innovation policies for advanced biorefinery development : key considerations and lessons from Sweden
This paper provides an innovation systems perspective on the combination of policy instrumentsthat will be required to stimulate technological development in the advanced biorefi nery fi eld.We fi rst consult the established innovation policy literature, and provide a general framework that canbe used to identify the type of policy instruments needed to develop new sustainable technology. In asecond step, we illustrate how these general principles can be applied in the context of future biorefineries based on either the thermochemical or biochemical conversion of lignocellulosic biomassfeedstocks. We draw heavily on the experiences of biorefi nery development in Sweden. A central conclusionis that in Sweden, and elsewhere, there are few niche markets for advanced biorefi neries and alack of long-term policy instruments for the more established renewable fuels. For this reason, there isa need for innovation policy instruments that create markets for renewable fuels and green chemicals,thus supporting technology development during a niche market phase and allowing for the fi rst commercial-scale plants to be built. The aim of such a policy would be to stimulate learning, form valuechains, and experiment with various design options on a larger scale; this complements the use oftechnology-neutral policy instruments such as carbon pricing, which primarily promotes the diffusionof mature technologies. The policy instruments that are candidates for the niche market phase include,for example, public procurement and various types of price guarantees.Validerad; 2017; Nivå 2; 2017-01-24 (rokbeg)</p