150 research outputs found

    A plethora of new, magnetic chemically peculiar stars from LAMOST DR4

    Full text link
    Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the code's peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.Comment: 62 pages, 24 figures, 10 tables, corrected some typos and minor mistakes; corrected wrong number of stars with absolute parallax errors less than 25

    Searching for shell stars in LAMOST DR4 by probing the Fe 42 multiplet lines

    Full text link
    Shell stars, in particular the cooler ones, often do not show conspicuous Balmer-line emission and may consequently be missed in surveys that specifically search for emission signatures in the Halpha line. The present work is aimed at identifying stars with shell-signatures via a search for strong FeII multiplet 42 lines at 4924, 5018, 5169A in archival LAMOST spectra. Candidates were selected by probing the FeII 42 lines in the spectra of a sample of colour-preselected early-type stars using a modified version of the MKCLASS code and then categorised by visual inspection of their spectra. We identified 75 stars showing conspicuous shell features, 43 Am/CP1 stars, 12 Ap/CP2 stars, and three objects with composite spectra. Spectral types and equivalent width measurements of the FeII 42 lines are presented for the sample of shell stars. Except for three objects, all shell stars appear significantly removed from the ZAMS in the colour-magnitude diagram, which is likely due to extinction by circumstellar material. We find a correlation between the equivalent width of the 5169A line and the distance to the locus of the main-sequence stars (the larger the IR-excess, the stronger the 5169A line) and studied the variability of the shell star sample using TESS data, identifying a very high proportion of double stars. All but 14 shell stars are new discoveries, which highlights the efficiency of the here presented novel approach to identify stars with subtle shell features. This study may be used as a blueprint for discovering these objects in massive spectral databases.Comment: 18 pages, accepted for Monthly Notices of the Royal Astronomical Societ

    Search for stellar spots in field blue horizontal-branch stars

    Full text link
    Blue horizontal-branch stars are Population II objects which are burning helium in their core and possess a hydrogen-burning shell and radiative envelope. Because of their low rotational velocities, diffusion has been predicted to work in their atmospheres. In many respects, blue horizontal-branch stars closely resemble the magnetic chemically peculiar stars of the upper main sequence, which show photometric variability caused by abundance spots on their surfaces. These spots are thought to be caused by diffusion and the presence of a stable magnetic field. However, the latter does not seem to be axiomatic. We searched for rotationally induced variability in 30 well-established bright field blue horizontal-branch stars in the solar neighbourhood and searched the literature for magnetic fields measurements of our targets. We employed archival photometric time series data from the ASAS, ASAS-SN, and SuperWASP surveys. The data were carefully reduced and processed, and a time series analysis was applied using several different techniques. We also synthesized existing photometric and spectroscopic data of magnetic chemically peculiar stars in order to study possible different surface characteristics producing lower amplitudes. In the accuracy limit of the employed data, no significant variability signals were found in our sample stars. The resulting upper limits for variability are given. We conclude that either no stellar surface spots are present in field blue horizontal-branch stars, or their characteristics (contrast, total area, and involved elements) are not sufficient to produce amplitudes larger than a few millimagnitudes in the optical wavelength region. New detailed models taking into account the elemental abundance pattern of blue horizontal-branch stars are needed to synthesize light curves for a comparison with our results.Comment: 6 pages, 2 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    New mercury-manganese stars and candidates from LAMOST DR4

    Full text link
    The present work presents our efforts at identifying new mercury-manganese (HgMn/CP3) stars using spectra obtained with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were searched for among pre-selected early-type spectra from LAMOST DR4 using a modified version of the MKCLASS code that probes several Hg II and Mn II features. The spectra of the resulting 332 candidates were visually inspected. Using parallax data and photometry from Gaia DR2, we investigated magnitudes, distances from the Sun, and the evolutionary status of our sample stars. We also searched for variable stars using diverse photometric survey sources. We present 99 bona fide CP3 stars, 19 good CP3 star candidates, and seven candidates. Our sample consists of mostly new discoveries and contains, on average, the faintest CP3 stars known (peak distribution 9.5 < G < 13.5 mag). All stars are contained within the narrow spectral temperature-type range from B6 to B9.5, in excellent agreement with the expectations and the derived mass estimates (2.4 < M(Sun) < 4 for most objects). Our sample stars are between 100 Myr and 500 Myr old and cover the whole age range from zero-age to terminal-age main sequence. They are almost homogeneously distributed at fractional ages on the main sequence < 80%, with an apparent accumulation of objects between fractional ages of 50% to 80%. We find a significant impact of binarity on the mass and age estimates. Eight photometric variables were discovered, most of which show monoperiodic variability in agreement with rotational modulation. Together with the recently published catalogue of APOGEE CP3 stars, our work significantly increases the sample size of known Galactic CP3 stars, paving the way for future in-depth statistical studies.Comment: 20 pages, 11 figures, 7 tables, accepted by Astronomy & Astrophysic
    • …
    corecore