93 research outputs found

    Relationships between serum HER2 ECD, TIMP-1 and clinical outcomes in Taiwanese breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum levels of the extracellular domain of HER2/neu (HER2 ECD) have been demonstrated to be associated with clinical outcomes. A disintegrin and metalloproteinase-10, a sheddase of HER2/neu, can drive cancer progression and its activity is inhibited by tissue inhibitor of metalloproteinase-1 (TIMP-1). However, elevated TIMP-1 expression has been associated with a poor prognosis of breast cancer. Therefore, this study was performed to explore the relationships between serum HER2 ECD, TIMP-1 and clinical outcomes.</p> <p>Methods</p> <p>One hundred and eighty-five female breast cancer patients, who received curative mastectomy without neo-adjuvant chemotherapy at Chang-Gung Memorial Hospital, were recruited with informed consent for this study. Pre-operative serum levels of HER2 ECD and TIMP-1 were measured using an enzyme-linked immunosorbent assay.</p> <p>Results</p> <p>Twenty-three cases (12.4%) were classified HER2 ECD positive. HER2 ECD positivity was significantly associated with age, lymph node involvement, histological grade, estrogen receptor status, progesterone receptor status, tissue HER2/neu overexpression, and disease-free survival (DFS). In an age, stage, ER and HER2/neu status matched subgroup (N = 41), the serum level of TIMP-1 was significantly associated with HER2 ECD positivity and DFS.</p> <p>Conclusions</p> <p>A high serum TIMP-1 was significantly associated with HER2 ECD positivity and a poorer DFS among Taiwanese primary breast cancer patients with HER2 overexpression.</p

    Associations of obesity and malnutrition with cardiac remodeling and cardiovascular outcomes in Asian adults:A cohort study

    Get PDF
    BackgroundObesity, a known risk factor for cardiovascular disease and heart failure (HF), is associated with adverse cardiac remodeling in the general population. Little is known about how nutritional status modifies the relationship between obesity and outcomes. We aimed to investigate the association of obesity and nutritional status with clinical characteristics, echocardiographic changes, and clinical outcomes in the general community.Methods and findingsWe examined 5,300 consecutive asymptomatic Asian participants who were prospectively recruited in a cardiovascular health screening program (mean age 49.6 ± 11.4 years, 64.8% male) between June 2009 to December 2012. Clinical and echocardiographic characteristics were described in participants, stratified by combined subgroups of obesity and nutritional status. Obesity was indexed by body mass index (BMI) (low, ≤25 kg/m2 [lean]; high, >25 kg/m2 [obese]) (WHO-recommended Asian cutoffs). Nutritional status was defined primarily by serum albumin (SA) concentration (low, ConclusionsIn our cohort study among asymptomatic community-based adults in Taiwan, we found that obese individuals with poor nutritional status have the highest comorbidity burden, the most adverse cardiac remodeling, and the least favorable composite outcome

    Human Caspase 12 Enhances NF-κB Activity through Activation of IKK in Nasopharyngeal Carcinoma Cells

    No full text
    Human nasopharyngeal carcinoma (NPC) is a highly invasive cancer associated with proinflammation. Caspase-12 (Casp12), an inflammatory caspase, is implicated in the regulation of NF-κB-mediated cellular invasion via the modulation of the IκBα protein in NPC cells. However, the effect mechanisms of Casp12 need to be elucidated. NPC cells were transfected with the full length of human Casp12 cDNA (pC12) and the effect of human Casp12 (hCasp12) on the NF-κB activity was investigated. We found ectopic expression of hCasp12 increased the NF-κB activity accompanied by an increased p-IκBα expression and a decreased IκBα expression. Treatment of BMS, a specific IKK inhibitor, and pC12-transfected cells markedly decreased the NF-κB activity and ameliorated the expression level of IκBα reduced by hCasp12. Co-immunoprecipitation assays validated the physical interaction of hCasp12 with IKKα/β, but not with NEMO. Furthermore, the NF-κB activity of ΔCasp12-Q (a mutated catalytic of hCasp12) transfected cells was concentration-dependently induced, but lower than that of hCasp12-transfected cells. Importantly, the hCasp12-mediated NF-kB activity was enhanced by TNFα stimulation. That indicated a role of the catalytic motif of hCasp12 in the regulation of the NF-κB activity. This study indicated hCasp12 activated the NF-κB pathway through the activation of IKK in human NPC cells

    Effects of Thyroid Hormones on Lipid Metabolism Pathologies in Non-Alcoholic Fatty Liver Disease

    No full text
    The typical modern lifestyle contributes to the development of many metabolic-related disorders, as exemplified by metabolic syndrome. How to prevent, resolve, or avoid subsequent deterioration of metabolic disturbances and the development of more serious diseases has become an important and much-discussed health issue. Thus, the question of the physiological and pathological roles of thyroid hormones (THs) in metabolism has never gone out of fashion. Although THs influence almost all organs, the liver is one of the most important targets as well as the hub of metabolic homeostasis. When this homeostasis is out of balance, diseases may result. In the current review, we summarize the common features and actions of THs, first focusing on their effects on lipid metabolism in the liver. In the second half of the review, we turn to a consideration of non-alcoholic fatty liver disease (NAFLD), a disease characterized by excessive accumulation of fat in the liver that is independent of heavy alcohol consumption. NAFLD is a growing health problem that currently affects ~25% of the world’s population. Unfortunately, there are currently no approved therapies specific for NAFLD, which, if left uncontrolled, may progress to more serious diseases, such as cirrhosis or liver cancer. This absence of effective treatment can also result in the development of non-alcoholic steatohepatitis (NASH), an aggressive form of NAFLD that is the leading cause of liver transplantation in the United States. Because THs play a clear role in hepatic fat metabolism, their potential application in the prevention and treatment of NAFLD has attracted considerable research attention. Studies that have investigated the use of TH-related compounds in the management of NAFLD are also summarized in the latter part of this review. An important take-home point of this review is that a comprehensive understanding of the physiological and pathological roles of THs in liver fat metabolism is possible, despite the complexities of this regulatory axis—an understanding that has clinical value for the specific management of NAFLD

    Amplification of the EGFR and CCND1 Are Coordinated and Play Important Roles in the Progression of Oral Squamous Cell Carcinomas

    No full text
    Oral squamous cell carcinoma (OSCC) is a common cancer in Taiwan and worldwide. To provide some clues for clinical management of OSCC, 72 advanced-stage OSCCs were analyzed using two microarray platforms (26 cases with Affymetrix 500 K and 46 cases with Affymetrix SNP 6.0). Genomic identification of significant targets in cancer analyses were used to identify significant copy number alterations (CNAs) using a q-value cutoff of 0.25. Among the several significant regions, 12 CNAs were common between these two platforms. Two gain regions contained the well-known oncogenes EGFR (7p11.2) and CCND1 (11q13.3) and several known cancer suppressor genes, such as FHIT (3p14.2&ndash;p12.1), FAT1 (4q35.1), CDKN2A (9p21.3), and ATM (11q22.3&ndash;q24.3), reside within the 10 deletion regions. Copy number gains of EGFR and CCND1 were further confirmed by fluorescence in situ hybridization and TaqMan CN assay, respectively, in 257 OSCC cases. Our results indicate that EGFR and CCND1 CNAs are significantly associated with clinical stage, tumor differentiation, and lymph node metastasis. Furthermore, EGFR and CCND1 CNAs have an additive effect on OSCC tumor progression. Thus, current genome-wide CNA analysis provides clues for future characterization of important oncogenes and tumor suppressor genes associated with the behaviors of the disease

    Differential microRNA expression in breast cancer with different onset age

    No full text
    <div><p>Purpose</p><p>The lower breast cancer incidence in Asian populations compared with Western populations has been speculated to be caused by environmental and genetic variation. Early-onset breast cancer occupies a considerable proportion of breast cancers in Asian populations, but the reason for this is unclear. We aimed to examine miRNA expression profiles in different age-onset groups and pathological subtypes in Asian breast cancer.</p><p>Methods</p><p>At the first stage, 10 samples (tumor: n = 6, normal tissue: n = 4) were analyzed with an Agilent microRNA 470 probe microarray. Candidate miRNAs with expression levels that were significantly altered in breast cancer samples or selected from a literature review were further validated by quantitative real-time PCR (qPCR) of 145 breast cancer samples at the second stage of the process. Correlations between clinicopathological parameters of breast cancer patients from different age groups and candidate miRNA expression were elucidated.</p><p>Results</p><p>In the present study, the tumor subtypes were significantly different in each age group, and an onset age below 40 had poor disease-free and overall survival rates. For all breast cancer patients, miR-335 and miR-145 were down-regulated, and miR-21, miR-200a, miR-200c, and miR-141 were up-regulated. In very young patients (age < 35 y/o), the expression of 3 and 8 specific miRNAs were up- and down-regulated, respectively. In young patients (36–40 y/o), 3 and 3 specific miRNAs were up- and down-regulated, respectively. miR-532-5p was up-regulated in triple-negative breast cancer.</p><p>Conclusions</p><p>Differential miRNA expressions between normal and tumor tissues were observed in different age groups and tumor subtypes. Evolutionarily conserved miRNA clusters, which initiate malignancy transformation, were up-regulated in the breast cancers of very young patients. None of the significantly altered miRNAs were observed in postmenopausal patients.</p></div

    Dysregulated miRNAs between tumors and normal tissues.

    No full text
    <p>Up-regulated miRNAs: (A) miR-21, (B) miR-141, (C) miR-200a, (D) miR-200c; down-regulated miRNAs: (E) miR-335 and (F) miR-145 (tumor: n = 145; normal breast tissue: n = 140; *significant by the <i>t</i>-test).</p
    corecore