343 research outputs found

    Immune-Complex Allergic Vasculitis in Association with the Immune-Complex Allergic Vasculitis in Association with the Development of Transverse Myelitis: A Case Report

    Get PDF
    A severe vasculitis, probably therapy related, in a sixty-four-year-old man being treated for possible subacute bacterial endocarditis, was associated with the development of transverse myelitis. It is hypothesized that the vasculitis affected the small vessels to the spinal cord in the same way that systemic vasculitis can also cause a transverse myelitis

    Use of Nuclear Magnetic Resonance Imaging Angiography to Follow-Up Arterial Remodeling in an Animal Model

    Get PDF
    Appropriately sized arteries in small animals may be possible models for studying the remodeling process as occurs after arterial balloon injury in humans. Magnetic resonance imaging (MRI) is able to noninvasively image tissue in vivo. To date, small animal angiog raphy models have mostly used research-dedicated instruments and resolution, which are not universally available.Experiments were carried out on a rat aorta model of remodeling in vivo (n=40). Arteries were injured by oversized balloon dilation; control arteries were uninjured. Angiography imaging was performed immediately before sacrifice with an unmodified clinical MRI unit, a 1.5 Tesla MR tomograph with a 20-cm-diameter coil. Longitudinal MRI pictures of the aorta and morphometry of tissue sections to measure luminal and arterial wall areas were analyzed with use of computer-assisted techniques.Comparison of dimensions demonstrated correlation between MRI and histology measurements of the lumen. MRI and morphometry showed a gradual increase in mean luminal area over 6 weeks following injury. The lumen increase correlated with total arterial area and thickness.In this rat aorta model, remodeling documented at histology was followed-up in vivo. The use of such clinical MRI scanners has potential to reduce animal numbers needed to follow-up the remodeling process after therapeutic intervention

    Small poly-L-lysines improve cationic lipid-mediated gene transfer in vascular cells in vitro and in vivo

    Get PDF
    The potential of two small poly-L-lysines ( sPLLs), low molecular weight sPLL ( LMW-L) containing 7 - 30 lysine residues and L18 with 18 lysine repeats, to enhance the efficiency of liposome-mediated gene transfer ( GT) with cationic lipid DOCSPER {[}1,3- dioleoyloxy- 2-( N-5-carbamoyl-spermine)-propane] in vascular smooth muscle cells ( SMCs) was investigated. Dynamic light scattering was used for determination of particle size. Confocal microscopy was applied for colocalization studies of sPLLs and plasmid DNA inside cells. GT was performed in proliferating and quiescent primary porcine SMCs in vitro and in vivo in porcine femoral arteries. At low ionic strength, sPLLs formed small complexes with DNA ( 50 100 nm). At high ionic strength, large complexes ( 11 mu m) were observed without any significant differences in particle size between lipoplexes ( DOCSPER/ DNA) and lipopolyplexes ( DOCSPER/ sPLL/ DNA). Both sPLLs were colocalized with DNA inside cells 24 h after transfection, protecting DNA against degradation. DOCSPER/ sPLL/ DNA formulations enhanced GT in vitro up to 5- fold, in a porcine model using local periadventitial application up to 1.5- fold. Both sPLLs significantly increased liposome- mediated GT. Poly-L-lysine L18 was superior to LMW-L since it enabled maximal GT at a 10-fold lower concentration. Thus, sPLLs may serve as enhancers for GT applications in SMCs in vitro and in vivo using local delivery. Copyright (c) 2007 S. Karger AG, Basel

    Music of northern Pakistan

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D062387 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore