305 research outputs found

    CORSIKA 8 -- the next-generation air shower simulation framework

    Full text link
    For more than 20 years, the community has heavily relied on CORSIKA for the simulation of extensive air showers, their Cherenkov light emission and their radio signals. While tremendously successful, the Fortran-based monolithic design of CORSIKA up to version 7 limits adaptation to new experimental needs, for example, in complex scenarios where showers transition from air into dense media, and to new computing paradigms such as the use of multi-core and GPU parallelization. With CORSIKA 8, we have reimplemented the core functionality of CORSIKA in a modern, modular, C++-based simulation framework, and successfully validated it against CORSIKA 7. Here, we discuss the philosophy of CORSIKA 8, showcase some example applications, and present the current state of implementation as well as the plans for the future.Comment: Submission to SciPost Phys. Proc. - Proceedings of the ISVHECRI 2022 conference; only very minor language changes in v

    Initial simulation study on high-precision radio measurements of the depth of shower maximum with SKA1-low

    Full text link
    As LOFAR has shown, using a dense array of radio antennas for detecting extensive air showers initiated by cosmic rays in the Earth's atmosphere makes it possible to measure the depth of shower maximum for individual showers with a statistical uncertainty less than 20g/cm220\,g/cm^2. This allows detailed studies of the mass composition in the energy region around 1017eV10^{17}\,eV where the transition from a Galactic to an Extragalactic origin could occur. Since SKA1-low will provide a much denser and very homogeneous antenna array with a large bandwidth of 50350MHz50-350\,MHz it is expected to reach an uncertainty on the XmaxX_{\max} reconstruction of less than 10g/cm210\,g/cm^2. We present first results of a simulation study with focus on the potential to reconstruct the depth of shower maximum for individual showers to be measured with SKA1-low. In addition, possible influences of various parameters such as the numbers of antennas included in the analysis or the considered frequency bandwidth will be discussed.Comment: To appear as part of the proceedings of the ARENA2016 meeting (Groningen, The Netherlands), published by EPJ-Wo

    A Rotationally Symmetric Lateral Distribution Function for Radio Emission from Inclined Air Showers

    Get PDF
    Radio detection of inclined air showers is currently receiving great attention. To exploit the potential, a suitable event reconstruction needs to be developed. The first step in this direction is the development of a model for the lateral distribution of the radio signals, which in the case of inclined air showers exhibits asymmetries due to "early-late" effects in addition to the usual asymmetries from the superposition of charge-excess and geomagnetic emission. We present a model which corrects for all asymmetries and successfully describes the lateral distribution of the energy fluence with a rotationally symmetric function. This gives access to the radiation energy as a measure of the energy of the cosmic-ray primary, and is also sensitive to the depth of the shower maximum.Comment: To be published in the proceedings of the ARENA2018 conference; revised version with important fix of former equation (2

    Modelling uncertainty of the radiation energy emitted by extensive air showers

    Full text link
    Recently, the energy determination of extensive air showers using radio emission has been shown to be both precise and accurate. In particular, radio detection offers the opportunity for an independent measurement of the absolute energy of cosmic rays, since the radiation energy (the energy radiated in the form of radio signals) can be predicted using first-principle calculations involving no free parameters, and the measurement of radio waves is not subject to any significant absorption or scattering in the atmosphere. Here, we verify the implementation of radiation-energy calculations from microscopic simulation codes by comparing Monte Carlo simulations made with the two codes CoREAS and ZHAireS. To isolate potential differences in the radio-emission calculation from differences in the air-shower simulation, the simulations are performed with equivalent settings, especially the same model for the hadronic interactions and the description of the atmosphere. Comparing a large set of simulations with different primary energies and shower directions we observe differences amounting to a total of only 3.3 %. This corresponds to an uncertainty of only 1.6 % in the determination of the absolute energy scale and thus opens the potential of using the radiation energy as an accurate calibration method for cosmic ray experiments.Comment: 8 pages, 2 figures, ICRC2017 contributio

    Determination of the absolute energy scale of extensive air showers via radio emission: systematic uncertainty of underlying first-principle calculations

    Full text link
    Recently, the energy determination of extensive air showers using radio emission has been shown to be both precise and accurate. In particular, radio detection offers the opportunity for an independent measurement of the absolute energy scale of cosmic rays, since the radiation energy (the energy radiated in the form of radio signals) can be predicted using first-principle calculations involving no free parameters, and the measurement of radio waves is not subject to any significant absorption or scattering in the atmosphere. To quantify the uncertainty associated with such an approach, we collate the various contributions to the uncertainty, and we verify the consistency of radiation-energy calculations from microscopic simulation codes by comparing Monte Carlo simulations made with the two codes CoREAS and ZHAireS. We compare a large set of simulations with different primary energies and shower directions and observe differences in the radiation energy prediction for the 30 - 80 MHz band of 5.2 %. This corresponds to an uncertainty of 2.6 % for the determination of the absolute cosmic-ray energy scale. Our result has general validity and can be built upon directly by experimental efforts for the calibration of the cosmic-ray energy scale on the basis of radio emission measurements.Comment: 22 pages, 3 figures, accepted for publication in Astroparticle Physic

    Radio Emission From EAS - Coherent Geosynchrotron Radiation

    Full text link
    Extensive air showers (EAS) have been known for over 30 years to emit pulses of radio emission at frequencies from a few to a few hundred MHz, an effect that offers great opportunities for the study of EAS with the next generation of "software radio interferometers" such as LOFAR and LOPES. The details of the emission mechanism, however, remain rather uncertain to date. Following past suggestions that the bulk of the emission is of geomagnetic origin, we model the radio pulses as "coherent geosynchrotron radiation" arising from the deflection of electrons and positrons in the earth's magnetic field. We analytically develop our model in a step-by-step procedure to disentangle the coherence effects arising from different scales present in the shower structure and infer which shower characteristics govern the frequency spectrum and radial dependence of the emission. The effect is unavoidable and our predictions are in good agreement with the available experimental data within their large margins of error.Comment: To appear in the proceedings of the 28th International Cosmic Ray Conference, 2003, Tsukuba, Japan; 4 pages, 2 figures, includes tsukuba.st
    corecore