8 research outputs found

    Study on the effect of chemoembolization combined with microwave ablation for the treatment of hepatocellular carcinoma in rats

    Get PDF
    PURPOSE:We aimed to evaluate the combining effects of transarterial chemoembolization (TACE) and open local thermal microwave ablation in a hepatocellular carcinoma animal model.METHODS:Tumor cubes were implanted into the liver of 30 male inbred ACI rats. Groups of 10 animals were treated at 13 days (TACE or microwave ablation) and 16 days (microwave ablation) postimplantation with combined therapy of TACE (0.1 mg mitomycin C; 0.1 mg iodized oil; 5.0 mg degradable starch microspheres) and microwave ablation (2450 Mhz; 45 s; 35 W) (study group A), TACE alone (control group B), or microwave ablation alone (control group C). At day 12 and day 25 tumor size was measured via magnetic resonance imaging and the relative growth ratio was calculated. Hepatic specimens were immunohistochemically examined for the expression of vascular endothelial growth factor (VEGF).RESULTS:Mean growth rates were 1.34±0.19 in group A, 3.19±0.13 in group B, and 4.18±0.19 in group C. Compared with control groups B and C, tumor growth rate in group A was significantly inhibited (P < 0.01). The VEGF-antibody reaction in peritumoral tissue (staining intensity at portal triad, percent antibody reaction and staining intensity at central vein) was significantly lower in group A compared with group B (P < 0.01). No significant difference between group A and group C could be observed.CONCLUSION:This investigation shows improved results of TACE followed by microwave ablation as treatment of hepatocellular carcinoma in a rat model, compared with single therapy regimen regarding the inhibition of growth rate and reduction of VEGF-level in peritumoral tissue

    Accuracy of cardiovascular magnetic resonance in myocarditis: comparison of MR and histological findings in an animal model

    Get PDF
    Background: Because Endomyocardial Biopsy has low sensitivity of about 20%, it can be performed near to myocardium that presented as Late Gadolinium Enhancement (LGE) in cardiovascular magnetic resonance (CMR). However the important issue of comparing topography of CMR and histological findings has not yet been investigated. Thus the current study was performed using an animal model of myocarditis. Results: In 10 male Lewis rats Experimental Autoimmune myocarditis was induced, 10 rats served as control. On day 21 animals were examined by CMR to compare topographic distribution of LGE to histological inflammation. Sensitivity, specificity, positive and negative predictive values for LGE in diagnosing myocarditis were determined for each segment of myocardium. Latter diagnostic values varied widely depending on topographic distribution of LGE and inflammation as well as on the used CMR sequence. Sensitivity of LGE was up to 76% (left lateral myocardium) and positive predictive values were up to 85% (left lateral myocardium), whereas sensitivity and positive predictive value dropped to 0 - 33% (left inferior myocardium). Conclusions: Topographic distribution of LGE and histological inflammation seem to influence sensitivity, specifity, positive and negative predictive values. Nevertheless, positive predictive value for LGE of up to 85% indicates that Endomyocardial Biopsy should be performed "MR-guided". LGE seems to have greater sensitivity than Endomyocardial Biopsy for the diagnosis of myocarditis

    Contrast Enhancement of the Brain by Folate-Conjugated Gadolinium–Diethylenetriaminepentaacetic Acid–Human Serum Albumin Nanoparticles by Magnetic Resonance Imaging

    No full text
    Different from regular small molecule contrast agents, nanoparticle-based contrast agents have a longer circulation time and can be modified with ligands to confer tissue-specific contrasting properties. We evaluated the tissue distribution of polymeric nanoparticles (NPs) prepared from human serum albumin (HSA), loaded with gadolinium–diethylenetriaminepentaacetic acid (Gd-DTPA) (Gd-HSA-NP), and coated with folic acid (FA) (Gd-HSA-NP-FA) in mice by magnetic resonance imaging (MRI). FA increases the affinity of the Gd-HSA-NP to FA receptor–expressing cells. Clinical 3 T MRI was used to evaluate the signal intensities in the different organs of mice injected with Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-FA. Signal intensities were measured and standardized by calculating the signal to noise ratios. In general, the NP-based contrast agents provided stronger contrasting than Gd-DTPA. Gd-HSA-NP-FA provided a significant contrast enhancement (CE) in the brain ( p = .0032), whereas Gd-DTPA or Gd-HSA-NP did not. All studied MRI contrast agents showed significant CE in the blood, kidney, and liver ( p < .05). Gd-HSA-NP-FA elicited significantly higher CE in the blood than Gd-HSA-NP ( p = .0069); Gd-HSA-NP and Gd-HSA-NP-FA did not show CE in skeletal muscle and gallbladder; Gd-HSA-NP, but not Gd-HSA-NP-FA, showed CE in the cardiac muscle. Gd-HSA-NP-FA has potential as an MRI contrast agent in the brain

    Contrast Enhancement of the Brain by Folate-Conjugated Gadolinium–Diethylenetriaminepentaacetic Acid–Human Serum Albumin Nanoparticles by Magnetic Resonance Imaging

    No full text
    Different from regular small molecule contrast agents, nanoparticle-based contrast agents have a longer circulation time and can be modified with ligands to confer tissue-specific contrasting properties. We evaluated the tissue distribution of polymeric nanoparticles (NPs) prepared from human serum albumin (HSA), loaded with gadolinium–diethylenetriaminepentaacetic acid (Gd-DTPA) (Gd-HSA-NP), and coated with folic acid (FA) (Gd-HSA-NP-FA) in mice by magnetic resonance imaging (MRI). FA increases the affinity of the Gd-HSA-NP to FA receptor–expressing cells. Clinical 3 T MRI was used to evaluate the signal intensities in the different organs of mice injected with Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-FA. Signal intensities were measured and standardized by calculating the signal to noise ratios. In general, the NP-based contrast agents provided stronger contrasting than Gd-DTPA. Gd-HSA-NP-FA provided a significant contrast enhancement (CE) in the brain ( p = .0032), whereas Gd-DTPA or Gd-HSA-NP did not. All studied MRI contrast agents showed significant CE in the blood, kidney, and liver ( p < .05). Gd-HSA-NP-FA elicited significantly higher CE in the blood than Gd-HSA-NP ( p = .0069); Gd-HSA-NP and Gd-HSA-NP-FA did not show CE in skeletal muscle and gallbladder; Gd-HSA-NP, but not Gd-HSA-NP-FA, showed CE in the cardiac muscle. Gd-HSA-NP-FA has potential as an MRI contrast agent in the brain

    Reduced Efficacy of the Plk1 Inhibitor BI 2536 on the Progression of Hepatocellular Carcinoma due to Low Intratumoral Drug Levels12

    Get PDF
    Highly promising preclinical data obtained in cultured cells and in nude mice bearing xenografts contrast with the rather modest clinical efficacy of Polo-like kinase 1 (Plk1) inhibitors. In the present study, we investigated if Plk1 might be a suitable target in hepatocellular carcinoma (HCC) and if a genetically engineered mouse tumor model that well reflects the tumor cell and micro-environmental features of naturally occurring cancers might be suitable to study anti-Plk1 therapy. Analysis of Plk1 expression in human HCC samples confirmed that HCC express much higher Plk1 levels than the adjacent normal liver tissue. Inhibition of Plk1 by an adenovirus encoding for a short hairpin RNA against Plk1 or by the small-molecule inhibitor BI 2536 reduced the viability of HCC cell lines and inhibited HCC xenograft progression in nude mice. Treatment of transforming growth factor (TGF) α/c-myc bitransgenic mice with BI 2536 during hepatocarcinogenesis reduced the number of dysplastic foci and of Ki-67-positive cells within the foci, indicating diminished tumorigenesis. In contrast, BI 2536 had no significant effect on HCC progression in the transgenic mouse HCC model as revealed by magnetic resonance imaging. Measurement of BI 2536 by mass spectrometry revealed considerably lower BI 2536 levels in HCC compared with the adjacent normal liver tissue. In conclusion, low intratumoral levels are a novel mechanism of resistance to the Plk1 inhibitor BI 2536. Plk1 inhibitors achieving sufficient intratumoral levels are highly promising in HCC treatment
    corecore