3,650 research outputs found
Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering
We report that rhomb-shaped metal nanoantenna arrays support multiple
plasmonic resonances, making them favorable bio-sensing substrates. Besides the
two localized plasmonic dipole modes associated with the two principle axes of
the rhombi, the sample supports an additional grating-induced surface plasmon
polariton resonance. The plasmonic properties of all modes are carefully
studied by far-field measurements together with numerical and analytical
calculations. The sample is then applied to surface-enhanced Raman scattering
measurements. It is shown to be highly efficient since two plasmonic resonances
of the structure were simultaneously tuned to coincide with the excitation and
the emission wave- length in the SERS experiment. The analysis is completed by
measuring the impact of the polarization angle on the SERS signal.Comment: 13 pages, 5 figure
The Nernst effect and the boundaries of the Fermi liquid picture
Following the observation of an anomalous Nernst signal in cuprates, the
Nernst effect was explored in a variety of metals and superconductors during
the past few years. This paper reviews the results obtained during this
exploration, focusing on the Nernst response of normal quasi-particles as
opposed to the one generated by superconducting vortices or by short-lived
Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer
cancelation does not imply a negligible Nernst response in a Fermi liquid. In
fact, the amplitude of the Nernst response measured in various metals in the
low-temperature limit is scattered over six orders of magnitude. According to
the data, this amplitude is roughly set by the ratio of electron mobility to
Fermi energy in agreement with the implications of the semi-classical transport
theory.Comment: Final version, Topical review for JPC
Molecular characterisation of congenital myasthenic syndromes in Southern Brazil
Objective To perform genetic testing of patients with congenital myasthenic syndromes (CMS) from the Southern Brazilian state of Parana. Patients and methods Twenty-five CMS patients from 18 independent families were included in the study. Known CMS genes were sequenced and restriction digest for the mutation RAPSN p.N88K was performed in all patients. Results We identified recessive mutations of CHRNE in ten families, mutations in DOK7 in three families and mutations in COLQ, CHRNA1 and CHRNB1 in one family each. The mutation CHRNE c. 70insG was found in six families. We have repeatedly identified this mutation in patients from Spain and Portugal and haplotype studies indicate that CHRNE c. 70insG derives from a common ancestor. Conclusions Recessive mutations in CHRNE are the major cause of CMS in Southern Brazil with a common mutation introduced by Hispanic settlers. The second most common cause is mutations in DOK7. The minimum prevalence of CMS in Parana is 0.18/100 000
Molecular characterisation of congenital myasthenic syndromes in Southern Brazil
Objective To perform genetic testing of patients with congenital myasthenic syndromes (CMS) from the Southern Brazilian state of Parana. Patients and methods Twenty-five CMS patients from 18 independent families were included in the study. Known CMS genes were sequenced and restriction digest for the mutation RAPSN p.N88K was performed in all patients. Results We identified recessive mutations of CHRNE in ten families, mutations in DOK7 in three families and mutations in COLQ, CHRNA1 and CHRNB1 in one family each. The mutation CHRNE c. 70insG was found in six families. We have repeatedly identified this mutation in patients from Spain and Portugal and haplotype studies indicate that CHRNE c. 70insG derives from a common ancestor. Conclusions Recessive mutations in CHRNE are the major cause of CMS in Southern Brazil with a common mutation introduced by Hispanic settlers. The second most common cause is mutations in DOK7. The minimum prevalence of CMS in Parana is 0.18/100 000
Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence
The electronic band structure of the (Ga,Mn)As system has been one of the
most intriguing problems in solid state physics over the past two decades.
Determination of the band structure evolution with increasing Mn concentration
is a key issue to understand the origin of ferromagnetism. Here we present room
temperature photoluminescence and ellipsometry measurements of
Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the
red shift of the room temperature near band gap emission from the
Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a
doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the
impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction
pattern and high resolution cross-sectional TEM images confirmed full
recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201
Equation of state and QCD transition at finite temperature
We calculate the equation of state in 2+1 flavor QCD at finite temperature
with physical strange quark mass and almost physical light quark masses using
lattices with temporal extent Nt=8. Calculations have been performed with two
different improved staggered fermion actions, the asqtad and p4 actions.
Overall, we find good agreement between results obtained with these two O(a^2)
improved staggered fermion discretization schemes. A comparison with earlier
calculations on coarser lattices is performed to quantify systematic errors in
current studies of the equation of state. We also present results for
observables that are sensitive to deconfining and chiral aspects of the QCD
transition on Nt=6 and 8 lattices. We find that deconfinement and chiral
symmetry restoration happen in the same narrow temperature interval. In an
Appendix we present a simple parametrization of the equation of state that can
easily be used in hydrodynamic model calculations. In this parametrization we
also incorporated an estimate of current uncertainties in the lattice
calculations which arise from cutoff and quark mass effects. We estimate these
systematic effects to be about 10 MeVComment: 31 pages, 24 EPS-figure
Numerical evolution of Brill waves
We report a numerical evolution of axisymmetric Brill waves. The numerical
algorithm has new features, including (i) a method for keeping the metric
regular on the axis and (ii) the use of coordinates that bring spatial infinity
to the edge of the computational grid. The dependence of the evolved metric on
both the amplitude and shape of the initial data is found.Comment: added more discussion of results and several reference
Drivers of diversity in human thermal perception – A review for holistic comfort models
Understanding the drivers leading to individual differences in human thermal perception has become increasingly important, amongst other things due to challenges such as climate change and an ageing society. This review summarizes existing knowledge related to physiological, psychological, and context-related drivers of diversity in thermal perception. Furthermore, the current state of knowledge is discussed in terms of its applicability in thermal comfort models, by combining modelling approaches of the thermoneutral zone (TNZ) and adaptive thermal heat balance model (ATHB). In conclusion, the results of this review show the clear contribution of some physiological and psychological factors, such as body composition, metabolic rate, adaptation to certain thermal environments and perceived control, to differences in thermal perception. However, the role of other potential diversity-causing parameters, such as age and sex, remain uncertain. Further research is suggested, especially regarding the interaction of different diversity-driving factors with each other, both physiological and psychological, to help establishing a holistic picture
Practical, Microfabrication-Free Device for Single-Cell Isolation
Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA) as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in ∼3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis
- …