661 research outputs found
GazeConduits: Calibration-Free Cross-Device Collaboration through Gaze and Touch
We present GazeConduits, a calibration-free ad-hoc mobile interaction concept that enables users to collaboratively interact with tablets, other users, and content in a cross-device setting using gaze and touch input. GazeConduits leverages recently introduced smartphone capabilities to detect facial features and estimate users' gaze directions. To join a collaborative setting, users place one or more tablets onto a shared table and position their phone in the center, which then tracks users present as well as their gaze direction to determine the tablets they look at. We present a series of techniques using GazeConduits for collaborative interaction across mobile devices for content selection and manipulation. Our evaluation with 20 simultaneous tablets on a table shows that GazeConduits can reliably identify which tablet or collaborator a user is looking at
Perceived Stress Levels in Adult Patients With Uveitis
Background: The aim of this study was to examine perceived stress levels in adult patients with uveitis.
Patients and Methods: One hundred seventy-three adult consecutive uveitis patients (age range 18 to 85 years) were analyzed in a cross-sectional design for their perceived stress, according to the Perceived Stress Questionnaire (PSQ). Stress levels were classified into normal stress, moderate stress, and high stress.
Results: In the majority of uveitis patients a normal stress level (82%) within the last 2 years was detected. In a subgroup analysis, perceived stress of the patients with active uveitis compared with patients with non-active uveitis was significantly higher within the last 2 years (n=80 active/n = 45 non-active; p = 0.005).
Conclusions: Overall 18% of the uveitis patient had raised perceived stress, similar to the general population but patients with active uveitis were significantly more stressed. Therefore, consideration of stress levels may be important in the therapy of uveitis patients
Measurement of Free Tropospheric Aerosols in the North Atlantic at the Pico Mountain Observatory.
AAAR 31st Annual Conference. Minneapolis, Minnesota, October 8-12, 2012.The Pico Mountain Observatory is located at 2225 m amsl on an inactive volcano at Pico Island in the Azores archipelago in the North Atlantic ~3900 km east and downwind of North America (38º28'15''N; 28º24’'14''W). The unique location of the Observatory enables sampling of free tropospheric air transported over long, intercontinental distances and is rarely affected by local emissions. The Observatory is affected mainly by North American outflow after its trans-Atlantic transport. Therefore, its location is ideal for observations of long-range transported pollutants emitted from anthropogenic and biogenic continental sources. The composition of continental pollution outflow is altered during transport by mixing, chemical reactions, phase changes, and removal processes. Thus, the properties of aerosol and trace gases in downwind regions are impacted by the outflow of pollutants, their chemical transformation, and sinks. In previous work, the sampled air-mass measurements (including CO, O3, NOx, NOy, NMHC, black carbon and aerosol optical size) and the simulations of their dispersion indicated outflow of North American tropospheric ozone and its precursors. Although the measurements have been crucial in explaining the evolution of North American gaseous pollution, little is known regarding the nature of the aged aerosol. New work is currently underway at the Observatory to provide chemical characterization of the intercepted free tropospheric aerosols. Here, we show the preliminary results of the free tropospheric aerosol composition and its physical properties. Samples were collected using high-volume filter samplers with quartz filters and analyzed for organic and elemental carbon (OC and EC, respectively). We compare the observed OC and EC values to the collocated measurements of gas- and particle-phase species, meteorological parameters and to the values found in current literature. We highlight the future work in which we will select filter samples based on the arrival of highly polluted air masses from anthropological or biomass burning emissions for further detailed analysis
Charge-Dependence of the Nucleon-Nucleon Interaction
Based upon the Bonn meson-exchange-model for the nucleon-nucleon ()
interaction, we calculate the charge-independence breaking (CIB) of the
interaction due to pion-mass splitting. Besides the one-pion-exchange (OPE), we
take into account the -exchange model and contributions from three and
four irreducible pion exchanges. We calculate the CIB differences in the
effective range parameters as well as phase shift differences for
partial waves up to total angular momentum J=4 and laboratory energies below
300 MeV. We find that the CIB effect from OPE dominates in all partial waves.
However, the CIB effects from the model are noticable up to D-waves and
amount to about 40% of the OPE CIB-contribution in some partial waves, at 300
MeV. The effects from 3 and 4 contributions are negligible except in
and .Comment: 12 pages, RevTex, 14 figure
Ten Years of Black Carbon Measurements in the North Atlantic at the Pico Mountain Observatory, Azores (2225m asl).
45th annual Fall Meeting, AGU. San Francisco, California, 3-7 December.The Pico Mountain Observatory is located in the summit caldera of the Pico mountain, an inactive volcano on the Pico Island in the Azores, Portugal (38.47°N, 28.40°W, Altitude 2225m asl). The Azores are often impacted by polluted outflows from the North American continent and local sources have been shown to have a negligible influence at the observatory. The value of the station stems from the fact that this is the only permanent mountaintop monitoring station in the North Atlantic that is typically located above the marine boundary layer (average MBL heights are below 1200 m and rarely exceed 1300 m) and often receives air characteristic of the lower free troposphere. Measurements of black carbon (BC) mass have been carried out at the station since 2001, mostly in the summer seasons. Here we discuss the BC decadal dataset (2001-2011) collected at the site by using a seven-wavelength AE31 Magee Aethalometer. Measured BC mass and computed Angstrom exponent (AE) values were analysed to study seasonal and diurnal variations. There was a large day-to-day variability in the BC values due to varied meteorological conditions that resulted in different diurnal patterns for different months. The daily mean BC at this location ranged between 0 and ~430 ngm-3, with the most frequently occurring value in the range 0-100 ngm-3. The overall mean for the 10 year period is ~24 ngm-3, with a coefficient of variation of 150%. The BC values exhibited a consistent annual trend being low in winter months and high in summer months, barring year to year variations. To differentiate between BC and other absorbing particles, we analyzed the wavelength dependence of aerosol absorption coefficient and determined a best-fit exponent i.e., the Ångström exponent, for the whole dataset. Visible Ångström exponent (AE: 470-520-590-660 nm) values ranged between 0 and 3.5, with most frequently occurring values in the range 0.85 to 1.25. By making use of the aethalometer light attenuation measurements at different wavelengths and Hysplit back trajectories, we divided the data into two categories. One for periods characterized by AE values close to 1; these periods are typically correlated with back trajectories originating from Canada, North America or northern Europe, indicating the dominance of BC on the light attenuation. Another characterized by AE values substantially different from 1; these periods correlated with back trajectories originating from dust-prone regions (e.g., the Sahara desert).The above measurements, with the aid of ancillary satellite and ground-based measurements will be employed in estimating the radiaitve effects of BC in the North Atlantic
Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons
The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the
atmosphere by anthropogenic processes. Recent studies have pointed out a
tight linkage between the atmospheric mole fractions of the NMHC ethane and
the atmospheric growth rate of methane. Consequently, atmospheric NMHC are
valuable indicators for tracking changes in anthropogenic emissions,
photochemical ozone production, and greenhouse gases. This study investigates
the 1950–2010 Northern Hemisphere atmospheric C<sub>2</sub>–C<sub>5</sub> NMHC ethane,
propane, <i>i</i>-butane, <i>n</i>-butane, <i>i</i>-pentane, and <i>n</i>-pentane by (a)
reconstructing atmospheric mole fractions of these trace gases using firn air
extracted from three boreholes in 2008 and 2009 at the North Greenland Eemian
Ice Drilling (NEEM) site and applying state-of-the-art models of trace gas
transport in firn, and by (b) considering eight years of ambient NMHC
monitoring data from five Arctic sites within the NOAA Global Monitoring
Division (GMD) Cooperative Air Sampling Network. Results indicate that these
NMHC increased by ~40–120% after 1950, peaked around 1980 (with
the exception of ethane, which peaked approximately 10 yr earlier), and have
since dramatically decreased to be now back close to 1950 levels. The earlier
peak time of ethane vs. the C<sub>3</sub>–C<sub>5</sub> NMHC suggests that different
processes and emissions mitigation measures contributed to the decline in
these NMHC. The 60 yr record also illustrates notable increases in the
ratios of the isomeric <i>iso-/n</i>-butane and <i>iso-/n</i>-pentane
ratios. Comparison of the reconstructed NMHC histories with 1950–2000
volatile organic compounds (VOC) emissions data and with other recently
published ethane trend analyses from ambient air Pacific transect data showed
(a) better agreement with North America and Western Europe emissions than
with total Northern Hemisphere emissions data, and (b) better agreement with
other Greenland firn air data NMHC history reconstructions than with the
Pacific region trends. These analyses emphasize that for NMHC, having
atmospheric lifetimes on the order of < 2 months, the Greenland firn
air records are primarily a representation of Western Europe and North
America emission histories
Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics
Open Access Journal; Published online: 22 Jan 2018The fate of doubled genes, from allopolyploid or autopolyploid origin, is controlled at multiple levels, resulting in the modern day cultivars. We studied the root growth of 3 different triploid banana cultivars under control and osmotic stress conditions. The root growth of the allopolyploid ABB cultivar was 42% higher under control and 61% higher under osmotic stress. By integrating transcriptomics and proteomics, we studied the gene expression of all 3 cultivars, resulting in 2,749 identified root proteins. 383 gene loci displayed genotype specific differential expression whereof 252 showed at least one Single Amino Acid Polymorphism (SAAP). In the ABB cultivar, allele expressions supposedly follow a 1/3 and 2/3 pattern for respectively the A and the B allele. Using transcriptome read alignment to assess the homeoallelic contribution we found that 63% of the allele specific genes deviated from this expectation. 32 gene loci even did not express the A allele. The identified ABB allele- specific proteins correlate well with the observed growth phenotype as they are enriched in energy related functions such as ATP metabolic processes, nicotinamide nucleotide metabolic processes, and glycolysis
- …