5 research outputs found

    Development of Standard Approach for Sickle Blade Manufacturing

    Get PDF
    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sickle blades was suggested to ensure a consistent blade. From this study, the optimum temperature for hardening and tempering of SUP 9 had been identified as 850 °C for hardening and 480 °C for tempering. The final hardness after heat treatment for SUP 9 was around 55HRC

    Development of variable rate sprayer for oil palm plantation

    No full text
    This project describes the design and development of a camera vision with color detection for the variable rate technology (VRT) automated sprayer. In this project, the smart sprayer system was already developed and mounted on the ATV. The automated sprayer system was developed by combination of the electromechanical system, PC parallel port relay board, the controller and visual basic programming software. This smart sprayer system is guided with the camera to detect the presence of weeds. Detection of weeds is based on the green color value from RGB value. The amount or percentage (%) of weeds detected determines the rate of spraying that is controlled by an electric motor and the relay board. In this project, the spray nozzles were modified to be fully open, fully closed and half open. The closing and opening of valves were controlled by the electromechanical system that receives the instruction from the camera vision. Experiments carried out shows that the nozzle is closed when the percentage of weeds detected is less than 2%. It is half open at 3% to 50% and fully open at more than 51%. The application rate of spraying can be determined from the result of the spraying operation

    Simulation and Modeling Application in Agricultural Mechanization

    No full text
    This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp

    Spiral groove bearing geometry variation effect on left ventricular assist device impeller performance

    No full text
    Mechanical heart assist device has been accepted as a reliable treatment modality for advanced heart failure patient option other than orthotropic heart transplantation. One type of the device is a centrifugal rotary mechanical blood pump that has an impeller levitated using a magnetic motor system in which, it reduces blood damage compared to its predecessors. Spiral Groove Bearing (SGB) is proposed as another design consideration to further decrease blood damage, increasing blood flow in the tight gaps, while maintaining pump performances. There were few studies investigating several aspects of SGB effect on blood flow within the mechanical blood pump, however no study has been done on the SGB geometry configurations, and its effect on device performance. In this study, two design factors of SGB geometry were simulated using computational fluid dynamics (CFD) software – a gap between impeller and housing, and SGB groove depths. The resulting variants were then evaluated using several performance indexes which are pump pressure output, average washout flow, hemolysis index, bearing load carrying capacity and pump efficiency. From the results, there are two conclusions that can be drawn. By deepening SGB groove depth, blood pump performance increased, while increasing the gap between the impeller and pump housing, most performance indexes were reduced. Scoring and screening method was also utilized to evaluate the best variant and it was found that, the variant with SGB groove depths 1000 μm and gap of 80 μm was the best in term of overall performances
    corecore