5 research outputs found
Pathobiological signatures of dysbiotic lung injury in pediatric patients undergoing stem cell transplantation
Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children’s hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung–immune system–microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes
Recommended from our members
Outcomes of Measurable Residual Disease in Pediatric Acute Myeloid Leukemia before and after Hematopoietic Stem Cell Transplant: Validation of Difference from Normal Flow Cytometry with Chimerism Studies and Wilms Tumor 1 Gene Expression
We enrolled 150 patients in a prospective multicenter study of children with acute myeloid leukemia undergoing hematopoietic stem cell transplantation (HSCT) to compare the detection of measurable residual disease (MRD) by a "difference from normal" flow cytometry (ΔN) approach with assessment of Wilms tumor 1 (WT1) gene expression without access to the diagnostic specimen. Prospective analysis of the specimens using this approach showed that 23% of patients screened for HSCT had detectable residual disease by ΔN (.04% to 53%). Of those patients who proceeded to transplant as being in morphologic remission, 10 had detectable disease (.04% to 14%) by ΔN. The disease-free survival of this group was 10% (0 to 35%) compared with 55% (46% to 64%, P < .001) for those without disease. The ΔN assay was validated using the post-HSCT specimen by sorting abnormal or suspicious cells to confirm recipient or donor origin by chimerism studies. All 15 patients who had confirmation of tumor detection relapsed, whereas the 2 patients with suspicious phenotype cells lacking this confirmation did not. The phenotype of the relapse specimen was then used retrospectively to assess the pre-HSCT specimen, allowing identification of additional samples with low levels of MRD involvement that were previously undetected. Quantitative assessment of WT1 gene expression was not predictive of relapse or other outcomes in either pre- or post-transplant specimens. MRD detected by ΔN was highly specific, but did not identify most relapsing patients. The application of the assay was limited by poor quality among one-third of the specimens and lack of a diagnostic phenotype for comparison
Outcomes of Pediatric Patients with Therapy-Related Myeloid Neoplasms
Long-term outcomes after allogeneic hematopoietic cell transplantation (HCT) for therapy-related myeloid neoplasms (tMNs) are dismal. There are few multicenter studies defining prognostic factors in pediatric patients with tMNs. We have accumulated the largest cohort of pediatric patients who have undergone HCT for a tMN to perform a multivariate analysis defining factors predictive of long-term survival. Sixty-eight percent of the 401 patients underwent HCT using a myeloablative conditioning (MAC) regimen, but there were no statistically significant differences in the overall survival (OS), event-free survival (EFS), or cumulative incidence of relapse and non-relapse mortality based on the conditioning intensity. Among the recipients of MAC regimens, 38.4% of deaths were from treatment-related causes, especially acute graft versus host disease (GVHD) and end-organ failure, as compared to only 20.9% of deaths in the reduced-intensity conditioning (RIC) cohort. Exposure to total body irradiation (TBI) during conditioning and experiencing grade III/IV acute GVHD was associated with worse OS. In addition, a diagnosis of therapy-related myelodysplastic syndrome and having a structurally complex karyotype at tMN diagnosis were associated with worse EFS. Reduced-toxicity (but not reduced-intensity) regimens might help to decrease relapse while limiting mortality associated with TBI-based HCT conditioning in pediatric patients with tMNs