9,886 research outputs found

    Estimating stratospheric temperature trends using satellite microwave radiances

    Get PDF
    The objective was to evaluate and intercompare stratospheric temperatures using Microwave Sounding Unit (MSU) data as a basis data set. The MSU, aboard the NOAA polar orbiter satellite series, provides twice daily global coverage over a layer (50-150 mb) at approximately a (170km)(exp 2) resolution. Conventional data sets will be compared to the satellite data in the lower stratosphere in order to assess their quality for trend computations

    Length of Multi-Year Precipitation and Primary Production Relationships Vary Regionally Across Grasslands in the Central U.S.

    Get PDF
    Grasslands in the central United States span large temperature and aridity gradients and regionally differ in their drivers of water availability. These differences likely determine how drought event periodicity and duration can influence grassland growth, and are important to consider as global warming changes energy and water distribution across these systems. Here, we explored frequency patterns in annual grassland plant growth (aboveground net primary productivity (ANPP)) and precipitation (PPT) relationships for over 20 years at six long-term research sites spatially distributed across the central grassland region. We identified the periods (\u3e1 year) these relationships are strongest- and when they occur- with wavelet coherence analyses. We found disturbance events such as severe drought lowered ANPP and preceded strong coherence at 2-4 year periods at two sites, potentially by increasing ANPP sensitivity to PPT. All sites showed strong coherence at 1-2 years periods, however this coherence was not consistent through time for two sites, where declines in ANPP did not correspond with PPT variability. In addition to strong coherence at 1-2 year periods, at southern desert and central tallgrass grasslands there was also strong coherence at 5-10 year periods over the entire record, indicating that long-term PPT and ANPP dynamics are important. Pacific ocean-atmosphere drivers of regional precipitation were found to influence coherence at all sites, and could potentially explain the long-term 5- 10 year coherence at the sites mentioned above. Contextualizing ANPP-PPT relationships through time at sites with different drivers of precipitation requires understanding of site-dependent production dynamics and is key to forecasting grassland responses to climate change

    Bell-inequality violation with a triggered photon-pair source

    Full text link
    Here we demonstrate, for the first time, violation of Bell's inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to reject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.Comment: 14 pages, 4 figure

    Maximum-Likelihood Comparisons of Tully-Fisher and Redshift Data: Constraints on Omega and Biasing

    Full text link
    We compare Tully-Fisher (TF) data for 838 galaxies within cz=3000 km/sec from the Mark III catalog to the peculiar velocity and density fields predicted from the 1.2 Jy IRAS redshift survey. Our goal is to test the relation between the galaxy density and velocity fields predicted by gravitational instability theory and linear biasing, and thereby to estimate βI=Ω0.6/bI,\beta_I = \Omega^{0.6}/b_I, where bIb_I is the linear bias parameter for IRAS galaxies. Adopting the IRAS velocity and density fields as a prior model, we maximize the likelihood of the raw TF observables, taking into account the full range of selection effects and properly treating triple-valued zones in the redshift-distance relation. Extensive tests with realistic simulated galaxy catalogs demonstrate that the method produces unbiased estimates of βI\beta_I and its error. When we apply the method to the real data, we model the presence of a small but significant velocity quadrupole residual (~3.3% of Hubble flow), which we argue is due to density fluctuations incompletely sampled by IRAS. The method then yields a maximum likelihood estimate βI=0.49±0.07\beta_I=0.49\pm 0.07 (1-sigma error). We discuss the constraints on Ω\Omega and biasing that follow if we assume a COBE-normalized CDM power spectrum. Our model also yields the 1-D noise noise in the velocity field, including IRAS prediction errors, which we find to be be 125 +/- 20 km/sec.Comment: 53 pages, 20 encapsulated figures, two tables. Submitted to the Astrophysical Journal. Also available at http://astro.stanford.edu/jeff

    Report from upper atmospheric science

    Get PDF
    Most of the understanding of the thermosphere resulted from the analysis of data accrued through the Atmosphere Explorer satellites, the Dynamics Explorer 2 satellite, and observations from rockets, balloons, and ground based instruments. However, new questions were posed by the data that have not yet been answered. The mesosphere and lower thermosphere have been less thoroughly studied because of the difficulty of accessibility on a global scale, and many rather fundamental characteristics of these regions are not well understood. A wide variety of measurement platforms can be used to implement various parts of a measurement strategy, but the major thrusts of the International Solar Terrestrial Physics Program would require Explorer-class missions. A remote sensing mission to explore the mesosphere and lower thermosphere and one and two Explorer-type spacecraft to enable a mission into the thermosphere itself would provide the essential components of a productive program of exploration of this important region of the upper atomsphere. Theoretical mission options are explored

    A robust floating nanoammeter

    Full text link
    A circuit capable of measuring nanoampere currents while floating at voltages up to at least 25kV is described. The circuit relays its output to ground potential via an optical fiber. We particularly emphasize the design and construction techniques which allow robust operation in the presence of high voltage spikes and discharges.Comment: 5 pages, 2 figure

    Economies of space and the school geography curriculum

    Get PDF
    This paper is about the images of economic space that are found in school curricula. It suggests the importance for educators of evaluating these representations in terms of the messages they contain about how social processes operate. The paper uses school geography texts in Britain since the 1970s to illustrate the different ways in which economic space has been represented to students, before exploring some alternative resources that could be used to provide a wider range of representations of economic space. The paper highlights the continued importance of understanding the politics of school knowledge
    corecore