14,620 research outputs found

    Double layers on auroral field lines

    Get PDF
    Time-stationary solutions to the Vlasov-Poisson equation for ion holes and double layers were examined along with particle simulations which pertain to recent observations of small amplitude (e phi)/t sub e approx. 1 electric field structures on auroral field lines. Both the time-stationary analysis and the simulations suggest that double layers evolve from holes in ion phase space when their amplitude reaches (e phi)/t sub e approx. 1. Multiple small amplitude double layers which are seen in long simulation systems and are seen to propagate past spacecraft may account for the acceleration of plasma sheet electrons to produce the discrete aurora

    Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules

    Full text link
    Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecule's spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement.Comment: 22 pages, 7 figures, prepared for Faraday Discussion 14

    Stochastic multi-channel lock-in detection

    Full text link
    High-precision measurements benefit from lock-in detection of small signals. Here we discuss the extension of lock-in detection to many channels, using mutually orthogonal modulation waveforms, and show how the the choice of waveforms affects the information content of the signal. We also consider how well the detection scheme rejects noise, both random and correlated. We address the particular difficulty of rejecting a background drift that makes a reproducible offset in the output signal and we show how a systematic error can be avoided by changing the waveforms between runs and averaging over many runs. These advances made possible a recent measurement of the electron's electric dipole moment.Comment: 11 pages, 3 figure

    A robust floating nanoammeter

    Full text link
    A circuit capable of measuring nanoampere currents while floating at voltages up to at least 25kV is described. The circuit relays its output to ground potential via an optical fiber. We particularly emphasize the design and construction techniques which allow robust operation in the presence of high voltage spikes and discharges.Comment: 5 pages, 2 figure

    Bridging k- and q- Space in the Cuprates: Comparing ARPES and STM Results

    Full text link
    A critical comparison is made between the ARPES-derived spectral function and STM studies of Friedel-like oscillations in Bi_2Sr_2CaCu_2O_{8+delta} (Bi2212). The data can be made approximately consistent, provided that (a) the elastic scattering seen in ARPES is predominantly small-angle scattering and (b) the `peak' feature seen in ARPES is really a dispersive `bright spot', smeared into a line by limited energy resolution; these are the `bright spots' which control the quasiparticle interferences. However, there is no indication of bilayer splitting in the STM data.Comment: 6 eps figures, revte

    Stereodivergent, Diels-Alder-initiated organocascades employing α,ÎČ-unsaturated acylammonium salts: scope, mechanism, and application.

    Get PDF
    Chiral α,ÎČ-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic Îł- and ÎŽ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcohols, and application to a formal synthesis of (+)-dihydrocompactin is described. A combined experimental and computational investigation of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of BrĂžnsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with experimentally observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR analysis of diene alcohol-BrĂžnsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through hydrogen-bonding effects

    LESSONS LEARNED FROM THE PHASE-OUT OF THE MFAs: MOVING FROM MANAGED DISTORTION TO MANAGED DISTORTION

    Get PDF
    Paper presented at 69th ICAC Meetings, Lubbock, TX, September 2010Agricultural and Food Policy, International Relations/Trade,

    Nearby Optical Galaxies: Selection of the Sample and Identification of Groups

    Get PDF
    In this paper we describe the Nearby Optical Galaxy (NOG) sample, which is a complete, distance-limited (cz≀cz\leq6000 km/s) and magnitude-limited (B≀\leq14) sample of ∌\sim7000 optical galaxies. The sample covers 2/3 (8.27 sr) of the sky (∣b∣>20∘|b|>20^{\circ}) and appears to have a good completeness in redshift (98%). We select the sample on the basis of homogenized corrected total blue magnitudes in order to minimize systematic effects in galaxy sampling. We identify the groups in this sample by means of both the hierarchical and the percolation {\it friends of friends} methods. The resulting catalogs of loose groups appear to be similar and are among the largest catalogs of groups presently available. Most of the NOG galaxies (∌\sim60%) are found to be members of galaxy pairs (∌\sim580 pairs for a total of ∌\sim15% of objects) or groups with at least three members (∌\sim500 groups for a total of ∌\sim45% of objects). About 40% of galaxies are left ungrouped (field galaxies). We illustrate the main features of the NOG galaxy distribution. Compared to previous optical and IRAS galaxy samples, the NOG provides a denser sampling of the galaxy distribution in the nearby universe. Given its large sky coverage, the identification of groups, and its high-density sampling, the NOG is suited for the analysis of the galaxy density field of the nearby universe, especially on small scales.Comment: 47 pages including 6 figures. Accepted for publication in Ap

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap

    Probing the electron EDM with cold molecules

    Get PDF
    We present progress towards a new measurement of the electron electric dipole moment using a cold supersonic beam of YbF molecules. Data are currently being taken with a sensitivity of 10−27e.cm/day10^{-27}\textrm{e.cm}/\sqrt{\textrm{day}}. We therefore expect to make an improvement over the Tl experiment of Commins' group, which currently gives the most precise result. We discuss the systematic and statistical errors and comment on the future prospect of making a measurement at the level of 10−29e.cm/day10^{-29}\textrm{e.cm}/\sqrt{\textrm{day}}.Comment: 8 pages, 6 figures, proceedings of ICAP 200
    • 

    corecore