13,800 research outputs found

    Constraints on Association of Single-pulse Gamma-ray Bursts and Supernovae

    Get PDF
    We explore the hypothesis, similar to one recently suggested by Bloom and colleagues, that some nearby supernovae are associated with smooth, single-pulse gamma-ray bursts, possibly having no emission above ~ 300 keV. We examine BATSE bursts with durations longer than 2 s, fitting those which can be visually characterized as single-pulse events with a lognormal pulse model. The fraction of events that can be reliably ascertained to be temporally and spectrally similar to the exemplar, GRB 980425 - possibly associated with SN 1998bw - is 4/1573 or 0.25%. This fraction could be as high as 8/1573 (0.5%) if the dimmest bursts are included. Approximately 2% of bursts are morphologically similar to GRB 980425 but have emission above ~ 300 keV. A search of supernova catalogs containing 630 detections during BATSE's lifetime reveals only one burst (GRB 980425) within a 3-month time window and within the total 3-sigma BATSE error radius that could be associated with a type Ib/c supernova. There is no tendency for any subset of single-pulse GRBs to fall near the Supergalactic Plane, whereas SNe of type Ib/c do show this tendency. Economy of hypotheses leads us to conclude that nearby supernovae generally are not related to smooth, single-pulse gamma-ray bursts.Comment: 25 pages, 5 figure

    Overconstrained dynamics in galaxy redshift surveys

    Full text link
    The least-action principle (LAP) method is used on four galaxy redshift surveys to measure the density parameter Omega_m and the matter and galaxy-galaxy power spectra. The datasets are PSCz, ORS, Mark III and SFI. The LAP method is applied on the surveys simultaneously, resulting in an overconstrained dynamical system that describes the cosmic overdensities and velocity flows. The system is solved by relaxing the constraint that each survey imposes upon the cosmic fields. A least-squares optimization of the errors that arise in the process yields the cosmic fields and the value of Omega_m that is the best fit to the ensemble of datasets. The analysis has been carried out with a high-resolution Gaussian smoothing of 500 km/s and over a spherical selected volume of radius 9,000 km/s. We have assigned a weight to each survey, depending on their density of sampling, and this parameter determines their relative influence in limiting the domain of the overall solution. The influence of each survey on the final value of Omega_m, the cosmographical features of the cosmic fields and the power spectra largely depends on the distribution function of the errors in the relaxation of the constraints. We find that PSCz and Mark III are closer to the final solution than ORS and SFI. The likelihood analysis yields Omega_m= 0.37\pm 0.01 to 1sigma level. PSCz and SFI are the closest to this value, whereas ORS and Mark III predict a somewhat lower Omega_m. The model of bias employed is a scale-dependent one, and we retain up to 42 bias coefficients b_{rl} in the spherical harmonics formalism. The predicted power spectra are estimated in the range of wavenumbers 0.02-0.49h Mpc^{-1}, and we compare these results with measurements recently reported in the literature.Comment: 10 pages, no figure

    Maximum-Likelihood Comparisons of Tully-Fisher and Redshift Data: Constraints on Omega and Biasing

    Full text link
    We compare Tully-Fisher (TF) data for 838 galaxies within cz=3000 km/sec from the Mark III catalog to the peculiar velocity and density fields predicted from the 1.2 Jy IRAS redshift survey. Our goal is to test the relation between the galaxy density and velocity fields predicted by gravitational instability theory and linear biasing, and thereby to estimate βI=Ω0.6/bI,\beta_I = \Omega^{0.6}/b_I, where bIb_I is the linear bias parameter for IRAS galaxies. Adopting the IRAS velocity and density fields as a prior model, we maximize the likelihood of the raw TF observables, taking into account the full range of selection effects and properly treating triple-valued zones in the redshift-distance relation. Extensive tests with realistic simulated galaxy catalogs demonstrate that the method produces unbiased estimates of βI\beta_I and its error. When we apply the method to the real data, we model the presence of a small but significant velocity quadrupole residual (~3.3% of Hubble flow), which we argue is due to density fluctuations incompletely sampled by IRAS. The method then yields a maximum likelihood estimate βI=0.49±0.07\beta_I=0.49\pm 0.07 (1-sigma error). We discuss the constraints on Ω\Omega and biasing that follow if we assume a COBE-normalized CDM power spectrum. Our model also yields the 1-D noise noise in the velocity field, including IRAS prediction errors, which we find to be be 125 +/- 20 km/sec.Comment: 53 pages, 20 encapsulated figures, two tables. Submitted to the Astrophysical Journal. Also available at http://astro.stanford.edu/jeff

    The Velocity Field from Type Ia Supernovae Matches the Gravity Field from Galaxy Surveys

    Get PDF
    We compare the peculiar velocities of nearby SNe Ia with those predicted by the gravity fields of full sky galaxy catalogs. The method provides a powerful test of the gravitational instability paradigm and strong constraints on the density parameter beta = Omega^0.6/b. For 24 SNe Ia within 10,000 km/s we find the observed SNe Ia peculiar velocities are well modeled by the predictions derived from the 1.2 Jy IRAS survey and the Optical Redshift Survey (ORS). Our best β\beta is 0.4 from IRAS, and 0.3 from the ORS, with beta>0.7 and beta<0.15 ruled out at 95% confidence levels from the IRAS comparison. Bootstrap resampling tests show these results to be robust in the mean and in its error. The precision of this technique will improve as additional nearby SNe Ia are discovered and monitored.Comment: 16 pages (LaTex), 3 postscript figure

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa

    Bridging k- and q- Space in the Cuprates: Comparing ARPES and STM Results

    Full text link
    A critical comparison is made between the ARPES-derived spectral function and STM studies of Friedel-like oscillations in Bi_2Sr_2CaCu_2O_{8+delta} (Bi2212). The data can be made approximately consistent, provided that (a) the elastic scattering seen in ARPES is predominantly small-angle scattering and (b) the `peak' feature seen in ARPES is really a dispersive `bright spot', smeared into a line by limited energy resolution; these are the `bright spots' which control the quasiparticle interferences. However, there is no indication of bilayer splitting in the STM data.Comment: 6 eps figures, revte
    • …
    corecore