3,238 research outputs found

    Thiol metabolism in the parasitic nematode Haemonchus contortus

    Full text link
    University of Technology, Sydney. Faculty of Science.Haemonchus contortus is an important parasitic nematode, both economically and pathologically. The emergence of widespread drug resistance requires new drug or vaccine targets to be identified. The requirement of aerobic organisms to control damage caused by reactive oxygen species and, the increased necessity of parasites to overcome the host immune response, has led to the investigation of antioxidant systems as potential targets. This work examines the thioredoxin antioxidant system in H. contortus, specifically the thioredoxin reductase and peroxiredoxin enzymes, to characterise their activity and determine if they are potential targets for parasite control. H. contortus contains two TrxRs, a cytoplasmic enzyme HcTrxRl with a selenocysteine in the active site, similar to the mammalian TrxR, and a mitochondrial enzyme HcTrxR2 with a nematode unique active site. HcTrxRl showed broad activity with thioredoxins from E. coli, sheep, and H. contortus while HcTrxR2 had high activity with only the mitochondrial H. contortus thioredoxin 1. Importantly, HcTrxRl was found to be more sensitive to the black tea inhibitor theaflavin than the selenocysteine containing mammalian TrxR, demonstrating the differences in the enzymes susceptibilities to inhibitors. To determine the function of the TrxR enzymes in nematodes, knockout (KO) strains of Caenorhabditis elegans were examined. TrxRl -/-KO worms were more sensitive to free radical attack and also to the anthelmintic ivermectin; while TrxR2 -/- KO eggs were highly sensitive to sodium hypochlorite. This demonstrates that inhibition of these enzymes would sensitise the nematodes to the host's immune attack. H. contortus contains two peroxiredoxins, the mitochondrial HcPrxl and the cytoplasmic HcPrx2. The activity of both peroxiredoxins was specific for the thioredoxin system; however, both peroxiredoxins were also able to be regenerated by the glutathione system when coupled to the nematode specific H. contortus thioredoxin 5. Both enzymes were stable to high concentrations of hydrogen peroxide which demonstrates different functions to their mammalian counterparts. A specific inhibitor of these peroxiredoxins was also identified which has minimal mammalian cytotoxicity. HcPrxl was found to be involved in drug resistance while HcPrx2 was found to be secreted and highly immunogenic. Analysis of homologous genes in C. elegans showed that both peroxiredoxin KO worms were sensitive to free radical attack; however, only the cytoplasmic CePrx2 KO C. elegans were sensitive to external oxidants. Overall, this work adds to the knowledge of H. contortus biology and identifies the enzymes of the thioredoxin system as potential drug or vaccine targets for parasite control

    A Principle of Neuromechanical Matching for Motor Unit Recruitment in Human Movement

    Full text link
    What determines which motor units are active in a motor task? In the respiratory muscles, motor units are recruited according to their mechanical advantages. We describe a principle of motor unit recruitment by neuromechanical matching due to mechanisms in the spinal cord that sculpt descending drive to motoneurons. This principle may be applicable to movements in nonrespiratory muscles

    Respiratory muscle activity in voluntary breathing tracking tasks: Implications for the assessment of respiratory motor control

    Full text link
    How the involuntary (bulbospinal) and voluntary (corticospinal) pathways interact in respiratory muscle control is not established. To determine the role of excitatory corticobulbar pathways in humans, studies typically compare electromyographic activity (EMG) or evoked responses in respiratory muscles during hypercapnic and voluntary tasks. Although ventilation is matched between tasks by having participants track signals of ventilation, these tasks may not result in matched respiratory muscle activity. The aim of this study was to describe respiratory muscle activity and ribcage and abdominal excursions during two different voluntary conditions, compared to hypercapnic hyperventilation. Ventilation was matched in the voluntary conditions via (i) a simple target of lung volume (‘volume tracking’) or (ii) targets of both ribcage and abdominal excursions, adjusted to end-expiratory lung volume in hypercapnic hyperventilation (‘bands tracking’). Compared to hypercapnic hyperventilation, respiratory parameters such as tidal volume were similar, but the ratio of ribcage to abdominal excursion was higher for both voluntary tasks. Inspiratory scalene and parasternal intercostal muscle activity was higher in volume tracking, but diaphragm and abdominal muscle activity showed little to no change. There were no differences in muscle activity in bands tracking for any muscle, compared to hypercapnic hyperventilation. An elevated ratio of ribcage to abdominal excursion in the bands tracking task indicates that participants could not accurately match the targets in this condition. Inspiratory muscle activity is altered in some muscles in some voluntary tasks, compared to hypercapnia. Therefore, differences in muscle activity should be considered in interpretation of studies that use these protocols to investigate respiratory muscle control

    Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84

    Get PDF
    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3′-diindolylmethane. 3,3′-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3′-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine172, located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3′-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3′-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [3H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3′-diindolylmethane and was not affected adversely by mutation of arginine172. These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings

    Discharge properties of human diaphragm motor units with ageing

    Full text link
    Key points: Ageing is associated with changes in the respiratory system including in the lungs, rib cage and muscles. Neural drive to the diaphragm, the principal inspiratory muscle, has been reported to increase during quiet breathing with ageing. We demonstrated that low-threshold motor units of the human diaphragm recruited during quiet breathing have similar discharge frequencies across age groups and shorter discharge times in older age. With ageing, motor unit action potential area increased. We propose that there are minimal functionally significant changes in the discharge properties of diaphragm motor units with ageing despite remodelling of the motor unit in the periphery. Abstract: There are changes in the skeletal, pulmonary and respiratory neuromuscular systems with healthy ageing. During eupnoea, one study has shown relatively higher crural diaphragm electromyographic activity (EMG) in healthy older adults (>51 years) than in younger adults, but these measures may be affected by the normalisation process used. A more direct method to assess neural drive involves the measurement of discharge properties of motor units. Here, to assess age-related changes in neural drive to the diaphragm during eupnoea, EMG was recorded from the costal diaphragm using a monopolar needle electrode in participants from three age groups (n ≥ 7 each): older (65–80 years); middle-aged (43–55 years) and young (23–26 years). In each group, 154, 174 and 110 single motor units were discriminated, respectively. A mixed-effects linear model showed no significant differences between age groups for onset (group mean range 9.5–10.2 Hz), peak (14.1–15.0 Hz) or offset (7.8–8.5 Hz) discharge frequencies during eupnoea. The motor unit recruitment was delayed in the older group (by ∼15% of inspiratory time; p = 0.02 cf. middle-aged group) and had an earlier offset time (by ∼15% of inspiratory time; p = 0.04 cf. young group). However, the onset of multiunit activity was similar across groups, consistent with no global increase in neural drive to the diaphragm with ageing. The area of diaphragm motor unit potentials was ∼40% larger in the middle-aged and older groups (P < 0.02), which indicates axonal sprouting and re-innervation of muscle fibres associated with ageing, even in middle-aged participants

    Optimal electrode position for abdominal functional electrical stimulation

    Full text link
    Abdominal functional electrical stimulation (abdominal FES) improves respiratory function. Despite this, clinical use remains low, possibly due to lack of agreement on the optimal electrode position. This study aimed to ascertain the optimal electrode position for abdominal FES, assessed by expiratory twitch pressure. Ten able-bodied participants received abdominal FES using electrodes placed: 1) on the posterolateral abdominal wall and at the motor points of 2) the external oblique muscles plus rectus abdominis muscles, and 3) the external obliques alone. Gastric (Pga) and esophageal (Pes) twitch pressures were measured using a gastroesophageal catheter. Single-stimulation pulses were applied at functional residual capacity during step increments in stimulation current to maximal tolerance or until Pga plateaued. Stimulation applied on the posterolateral abdominal wall led to a 71% and 53% increase in Pga and Pes, respectively.compared with stimulation of the external oblique and rectus abdominis muscles (P < 0.001) and a 95% and 56% increase in Pga and Pes, respectively.compared with stimulation of the external oblique muscles alone (P < 0.001). Stimulation of both the external oblique and rectus abdominis muscles led to an 18.3% decrease in Pg.compared with stimulation of only the external oblique muscles (P = 0.040), with inclusion of the rectus abdominis having no effect on Pes (P = 0.809). Abdominal FES applied on the posterolateral abdominal wall generated the highest expiratory twitch pressures. As expiratory pressure is a good indicator of expiratory muscle strength and, thus, cough efficacy, we recommend this electrode position for all therapeutic applications of abdominal FES. NEW & NOTEWORTHY While abdominal functional electrical stimulation (abdominal FES) can improve respiratory function, clinical use remains low. This is at least partly due to lack of agreement on the optimal electrode position. Therefore, this study aimed to ascertain the optimal electrode position for abdominal FES. We show that electrodes placed on the posterolateral abdominal wall generated the highest expiratory twitch pressures. As such, we recommend this electrode position for all therapeutic applications of abdominal FES

    Length is a Curse and a Blessing for Document-level Semantics

    Full text link
    In recent years, contrastive learning (CL) has been extensively utilized to recover sentence and document-level encoding capability from pre-trained language models. In this work, we question the length generalizability of CL-based models, i.e., their vulnerability towards length-induced semantic shift. We verify not only that length vulnerability is a significant yet overlooked research gap, but we can devise unsupervised CL methods solely depending on the semantic signal provided by document length. We first derive the theoretical foundations underlying length attacks, showing that elongating a document would intensify the high intra-document similarity that is already brought by CL. Moreover, we found that isotropy promised by CL is highly dependent on the length range of text exposed in training. Inspired by these findings, we introduce a simple yet universal document representation learning framework, LA(SER)3^{3}: length-agnostic self-reference for semantically robust sentence representation learning, achieving state-of-the-art unsupervised performance on the standard information retrieval benchmark.Comment: Accepted at EMNLP 2023. Our code is publicly available at https://github.com/gowitheflow-1998/LA-SER-cube

    Differential activation of the human costal and crural diaphragm during voluntary and involuntary breaths

    Full text link
    The diaphragm is the primary muscle that generates the negative intrathoracic pressure to drive inspiratory airflow. The diaphragm consists of two parts, the costal and crural portions, with different roles during inspiration in animals, particularly when the stimulus to breathe is increased. In this study, the neural drive to the costal and crural portions of the diaphragm was assessed in nine healthy participants [8 male, aged 32 ∓ 13 yr (mean ∓ SD)]. Inspiratory electromyographic activity (EMG) was recorded from the costal diaphragm by using an intramuscular electrode and from the crural diaphragm with a multipair gastroesophageal catheter. Participants performed voluntary augmented breaths at 120%, 140%, and 160% of their tidal volume and also underwent progressive hypercapnia to induce involuntary breathing. Irrespective of the task, the increase in crural activity (normalized to quiet breathing) was only ~60% of the increase in costal activity (slope: 0.56 ∓ 0.30, P ≺ 0.001). The onset and peak timing of EMG activity was similar for the costal and crural diaphragm during quiet breathing. Thus, when stimulated by either a voluntary or involuntary drive to breathe above tidal volume, the neural drive to the diaphragm was greater to the costal than to the crural portion

    Increased diaphragm motor unit discharge frequencies during quiet breathing in people with chronic tetraplegia

    Full text link
    Key points: Respiratory muscle strength is compromised in people with tetraplegia, which may be compensated for by an increase in neural drive to the diaphragm. We found that the discharge frequencies of diaphragm motor units are higher in people with chronic tetraplegia compared with able-bodied people during quiet breathing. Furthermore, we found that the area of single motor unit potentials was increased in people with tetraplegia. These results suggest an increased motoneurone output to the diaphragm and remodelling of diaphragm motor units to maintain ventilation in tetraplegia. Abstract: People with tetraplegia have reduced inspiratory muscle strength, ∼40% of able-bodied individuals. Paralysed or partially paralysed respiratory muscles as a result of tetraplegia compromise lung function, increase the incidence of respiratory infections and can cause dyspnoea. We hypothesised that reduced inspiratory muscle strength in tetraplegia may increase neural drive to the inspiratory muscles to maintain ventilation. We recorded the discharge properties of single motor units from the diaphragm in participants with chronic tetraplegia (8 males, 42–78 years, C3–C6 injury, AIS A–C) and able-bodied control participants (6 males matched for age and body mass index). In each group, 117 and 166 single motor units, respectively, were discriminated from recordings in the costal diaphragm using a monopolar electrode. A linear mixed-effects model analysis showed higher peak discharge frequencies of motor units during quiet breathing in tetraplegia (17.8 ± 4.9 Hz; mean ± SD) compared with controls (12.4 ± 2.2 Hz) (P < 0.001). There were no differences in tidal volume, inspiratory time or mean air flow between groups. Motor unit potentials in tetraplegia, compared with controls, were larger in amplitude (1.1 ± 0.7 mV and 0.5 ± 0.3 mV, respectively, P = 0.007) and area (1.83 ± 1.49 µV ms and 0.69 ± 0.52 µV ms, respectively, P = 0.003). The findings indicate that diaphragm motor unit remodelling is likely to have occurred in people with chronic tetraplegia and that there is an increase in diaphragm motor unit discharge rates during quiet breathing. These neural changes ensure that ventilation is maintained in people with chronic tetraplegia
    • …
    corecore