26 research outputs found
Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface
We propose a very simple method to determine the electrical
tip-surface force in Atomic
Force Microscopes used to study the electrical properties of metallic or insulating materials; the
analysis of the measurements as well as determination of the appropriate experimental procedures
requiring an analytical model of the tip-surface capacitance.
The comparison of force
expressions obtained by this method with those obtained by exact
derivation in the case of the sphere-infinite plane system
shows very good agreement. This method is then applied to determine
the tip-surface force, the
real shape of the tip being introduced in the derivation. The
obtained expression is compared to
experimental and numerical data. We emphasize that this method is very general and can be applied
to any axially symmetric capacitor
Local triboelectricity on oxide surfaces
In triboelectric phenomena, electric charges are transferred when two
materials are touched or rubbed together. We present in this paper a
study of this effect performed on metallic oxides at the nanometric
scale by an Atomic Force Microscope in the resonant mode. We show that
following the electrification processes, positive or negative charges
can be deposited. From our experimental data, we conclude that the
charge transfer results in an equilibrium final state, the occupied
states in the gap being "surface states" with large density and
spread under the surface along a characteristic distance of about 100 nm
Magneto-optical Faraday imaging with an apertureless scanning near field optical microscope
We have developed an apertureless Scanning Near field Optical Microscope (SNOM) in
transmission, devoted to near field magneto-optics. Our apertureless SNOM combines an inverted
optical microscope, which has been adapted to Faraday effect imaging, with a commercial
stand-alone Scanning Probe Microscope, used in Atomic Force Microscope (AFM) mode. Two
different probes are validated as apertureless SNOM tips: a home-made etched tungsten wire and
a commercial AFM silicon probe. We present and analyze preliminary images of the doMayn
structure in iron garnets. They indicate a SNOM resolution clearly in the sub-micrometric range.
Besides, the near field magneto-optical image presents some unexpected features, not revealed in
far field images
organ318
The Atomic Force Microscope used in resonant mode is a powerful tool to measure local surface
properties : for example, the quantitative analysis of the electrical forces induced by the
application of an electrical tension between a conductive microscope tip and a surface in
front allows the determination of the tip/surface capacitance and of the local surface work
fonction. However, this analysis needs a well adapted model for each type of surface. In this
paper, we calculate, with a simple geometrical model, the tip-surface interaction for a
metallic tip and a semiconducting surface and we describe its variation with the applied
tension and the tip/surface distance. Our results show different kinds of behaviour that we
are able to associate with the different semiconductor regimes (accumulation, depletion,
inversion). Therefore, it is not possible to describe this tip-surface system as a passive
capacitance.La Microscopie à Force Atomique en mode résonnant est un outil bien adapté à la mesure des
caractéristiques locales des surfaces : par exemple, l'analyse quantitative des forces
électriques créées par l'application d'une différence de potentiel entre la pointe
conductrice du microscope et une surface en regard, permet de déterminer la capacité
pointe/surface et le travail de sortie local de la surface. Toutefois cette analyse réclame
un modèle adapté à chaque système. Cet article a pour but de calculer, dans un modèle
géométrique simple, l'interaction pointe/surface dans le cas d'une pointe métallique et d'une
surface semiconductrice et de décrire ses variations en fonction du potentiel appliqué et de
la distance pointe-surface. Nos résultats montrent que ces forces présentent une grande
richesse de comportements que nous avons associés aux différents régimes (accumulation,
déplétion, inversion) du semiconducteur et que les modèles simples qui décrivent le système
pointe/surface comme une capacité passive sont inappropriés