34 research outputs found
Side Differences of Thigh Muscle Cross-Sectional Areas and Maximal Isometric Muscle Force in Bilateral Knees with the Same Radiographic Disease Stage, but Unilateral Frequent Pain – Data from the Osteoarthritis Initiative
Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contra-lateral knees without pain, and to examine the correlation between MCSAs and strength in painful vs painless knees. Methods Forty-eight subjects (31 women; 17 men; age 45–78 years) were drawn from 4,796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contra-lateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI database. Results Painful knees showed 5.2% lower extensor MCSAs (P = 0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (P = 0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (P > 0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44 < r < 0.66). Conclusions Knees with frequent pain demonstrate lower MCSAs and force of the quadriceps (but not of other thigh muscles) compared with contra-lateral knees without knee pain with the same radiographic stage. Frequent pain does not appear to affect the correlations between MCSAs and strength in OA knees. The findings suggest that quadriceps strengthening exercise may be useful in treating symptomatic knee OA
The Impact of Exercise Training and Supplemental Oxygen on Peripheral Muscles in COPD: A Randomized Controlled Trial
Objective: Exercise training is a cornerstone of the treatment of COPD while the related inter-individual heterogeneity in skeletal muscle dysfunction and adaptations are not yet fully understood. We set out to investigate the effects of exercise training and supplemental oxygen on functional and structural peripheral muscle adaptation. Methods: In this prospective, randomized, controlled, double-blind study, 28 patients with non-hypoxemic COPD (FEV1 45.92 ± 9.06%) performed six-weeks of combined endurance and strength training, three times a week while breathing either supplemental oxygen or medical air. The impact on exercise capacity, muscle strength and quadriceps femoris muscle cross-sectional area (CSA), was assessed by maximal cardiopulmonary exercise testing, ten-repetition maximum strength test of knee extension, and magnetic resonance imaging, respectively. Results: After exercise training, patients demonstrated a significant increase of functional capacity, aerobic capacity, exercise tolerance, quadriceps muscle strength and bilateral CSA. Supplemental oxygen affected significantly the training impact on peak work rate when compared to medical air (+0.20 ± 0.03 vs +0.12 ± 0.03 Watt/kg, p = 0.047); a significant increase in CSA (+3.9 ± 1.3 cm2, p = 0.013) was only observed in the training group using oxygen. Supplemental oxygen and exercise induced peripheral desaturation were identified as significant opposing determinants of muscle gain during this exercise training intervention, which led to different adaptations of CSA between the respective subgroups. Conclusions: The heterogenous functional and structural muscle adaptations seem determined by supplemental oxygen and exercise induced hypoxia. Indeed, supplemental oxygen may facilitate muscular training adaptations, particularly in limb muscle dysfunction, thereby contributing to the enhanced training responses on maximal aerobic and functional capacity
Intuitionistic implication makes model checking hard
We investigate the complexity of the model checking problem for
intuitionistic and modal propositional logics over transitive Kripke models.
More specific, we consider intuitionistic logic IPC, basic propositional logic
BPL, formal propositional logic FPL, and Jankov's logic KC. We show that the
model checking problem is P-complete for the implicational fragments of all
these intuitionistic logics. For BPL and FPL we reach P-hardness even on the
implicational fragment with only one variable. The same hardness results are
obtained for the strictly implicational fragments of their modal companions.
Moreover, we investigate whether formulas with less variables and additional
connectives make model checking easier. Whereas for variable free formulas
outside of the implicational fragment, FPL model checking is shown to be in
LOGCFL, the problem remains P-complete for BPL.Comment: 29 pages, 10 figure
Revision 1 Size and position of the healthy meniscus, and its Correlation with sex, height, weight, and bone area- a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity.</p> <p>Methods</p> <p>Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded.</p> <p>Results</p> <p>The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011).</p> <p>Conclusions</p> <p>These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.</p
Scientific Evidence and Rationale for the Development of Curcumin and Resveratrol as Nutraceutricals for Joint Health
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods
Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study
To explore whether quantitative, three-dimensional measurements of meniscal position and size are associated with knee pain using a within-person, between-knee study design. We studied 53 subjects (19 men, 34 women) from the Osteoarthritis Initiative, with identical radiographic OA grades in both knees, but frequent pain in one and no pain in the other knee. The tibial plateau and menisci were analyzed using coronally reconstructed double echo steady-state sequence with water excitation (DESSwe) MRI. The medial meniscus covered a smaller proportion of the tibial plateau (-5%) and displayed greater extrusion of the body (+15%) in painful than in painless knees (paired t-test; p < 0.05). The external margin of the lateral meniscus showed greater extrusion of the body in painful knees (+22%; p = 0.03), but no significant difference in the position of its internal margin or tibial coverage. Medial or lateral extrusion a parts per thousand yen3 mm was more frequent in painful (n = 23) than in painless knees (n = 12; McNemar's test; p = 0.02). No significant association was observed between meniscal size and knee pain. These data suggest a relationship between extrusion of the meniscal body, as measured with quantitative MRI, and knee pain in subjects with knee OA. Further studies need to confirm these findings and their clinical relevance. Meniscal segmentation provides quantitative measures of meniscal size/position Between-knee, within-person approaches can explore potential sources of knee pain Meniscal extrusion may be a potential source of knee pain
Comparison of different radiography systems in an experimental study for detection of forearm fractures and evaluation of the Müller-AO and Frykman classification for distal radius fractures
OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated
Denuded subchondral bone and knee pain in persons with knee osteoarthritis
Studies involving human infants and monkeys suggest that experience plays a critical role in modifying how subjects respond to vowel sounds between and within phonemic classes. Experiments with human listeners were conducted to establish appropriate stimulus materials. Then, eight European starlings (Sturnus vulgaris) were trained to respond differentially to Vowel tokens drawn from stylized distributions for the English Vowels /i/ and /I/, or from two distributions of vowel sounds that were orthogonal in the F1-F2 plane. Following training, starlings' responses generalized with facility to novel stimuli drawn from these distributions. Responses could be predicted well on the bases of frequencies of the first two formants and distributional characteristics of experienced vowel sounds with a graded structure about the central ''prototypical'' vowel of the training distributions. Starling responses corresponded closely to adult human judgments of ''goodness'' for English vowel sounds. Finally, a simple linear association network model trained with vowels drawn from the avian training set provided a good account for the data. Findings suggest that little more than sensitivity to statistical regularities of language input (probability-density distributions) together with organizational processes that serve to enhance distinctiveness may accommodate much of what is known about the functional equivalence of vowel sounds. (C) 1998 Acoustical Society of America. [S0001-4966(98)00312-9]