1,296 research outputs found

    From Burdens To Benefits: The Societal Impact Of PDL-Enriched, Efficacy-Enhanced Educators

    Get PDF
    Societies continue to absorb increased burdens in cost for helping citizens unable to achieve at optimal levels.  Building on past research, we project educational benefits to offset current societal burdens through enhanced educator capabilities.  Studies reviewed show participation in a high-impact professional development and learning solution resulted in improved student performance and reduced dropout rates, reduced disciplinary rates and increased rates for college-bound, along with lower teacher turnover.  Computations show that generalization of such impacts should trade societal burdens for benefits at between 3.7billionand3.7 billion and 6.9 billion within the first year.  Cumulatively within 20 years the burdens converted to benefits are projected to exceed $85 billion.  Enhanced educator capabilities will substantively reduce needs and costs for societal programs, replaced with tangible benefits to all

    Sampling Local Fungal Diversity in an Undergraduate Laboratory using DNA Barcoding

    Get PDF
    Traditional methods for fungal species identification require diagnostic morphological characters and are often limited by the availability of fresh fruiting bodies and local identification resources. DNA barcoding offers an additional method of species identification and is rapidly developing as a critical tool in fungal taxonomy. As an exercise in an undergraduate biology course, we identified 9 specimens collected from the Hendrix College campus in Conway, Arkansas, USA to the genus or species level using morphology. We report that DNA barcoding targeting the internal transcribed spacer (ITS) region supported several of our taxonomic determinations and we were able to contribute 5 ITS sequences to GenBank that were supported by vouchered collection information. We suggest that small-scale barcoding projects are possible and that they have value for documenting fungal diversity

    Reconstructing complex regions of genomes using long-read sequencing technology

    Get PDF
    Cataloged from PDF version of article.Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state

    Arthrocentesis versus non-surgical intervention as initial treatment for temporomandibular joint arthralgia:a randomized controlled trial with long-term follow-up

    Get PDF
    Arthrocentesis for arthralgia of the temporomandibular joint (TMJ) is often only indicated when conservative, non-surgical interventions have failed. However, performing arthrocentesis as initial therapy may facilitate earlier and better recuperation of the joint. The aim of this study was to assess the efficacy of this therapy with a long-term follow-up. Eighty-four patients were randomly allocated to receive either arthrocentesis as initial treatment (n = 41) or non-surgical intervention (n = 43). Pain (100-mm visual analogue scale, VAS) and mandibular function impairment questionnaire scores (MFIQ, 0–100) were recorded at 3, 12, and 26 weeks, and ≥ 5 years (median 6.2, interquartile range 5.6–7.4 years). Univariable analyses were performed and linear mixed-effect models were constructed. Patients in the arthrocentesis group experienced significantly lower TMJ arthralgia compared to those treated non-surgically (pain during movement: −10.23 mm (95% confidence interval −17.86; −2.60); pain at rest: − 8.39 mm (95% confidence interval −13.70; −3.08)), while mandibular function remained similar in the two groups (MFIQ −2.41 (95% confidence interval −8.61; 3.78)). Of the final sample, 10 patients (10/39, 26%) in the non-surgical intervention group and two patients (2/34, 6%) in the arthrocentesis group received additional treatment during follow-up. Thus, initial treatment with arthrocentesis reduced TMJ arthralgia more efficaciously than non-surgical intervention in the long term, while maintaining similar mandibular function

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology

    Mobile Consumer Behavior in Fashion m-Retail: An Eye Tracking Study to Understand Gender Differences

    Get PDF
    © 2020 ACM. With exponential adoption of mobile devices, consumers increasingly use them for shopping. There is a need to understand the gender differences in mobile consumer behavior. This study used mobile eye tracking technology and mixed-method approach to analyze and compare how male and female mobile fashion consumers browse and shop on smartphones. Mobile eye tracking glasses recorded fashion consumers' shopping experiences using smartphones for browsing and shopping on the actual fashion retailer's website. 14 participants successfully completed this study, half of them were males and half females. Two different data analysis approaches were employed, namely a novel framework of the shopping journey, and semantic gaze mapping with 31 Areas of Interest (AOI) representing the elements of the shopping journey. The results showed that male and female users exhibited significantly different behavior patterns, which have implications for mobile website design and fashion m-retail. The shopping journey map framework proves useful for further application in market research

    A retrospective analysis of bilateral fractures over sixteen years: localisation and variation in treatment of second hip fractures

    Get PDF
    The aim of this study was the evaluation of contralateral hip fractures after a previous hip fracture. For this retrospective analysis patients were selected from the database of the LUMC, a teaching hospital in the south-west of the Netherlands. We analyzed all patients with a second fracture of a hip between 1992 and 2007. The exclusion criteria were high impact trauma and patients with diseases or medication known to have a negative effect on bone metabolism. A total of 1,604 hip fractures were identified. The possible predictive factors for the second fracture and descriptive statistics related to surgery (Hb and HT before and after the operation, total amount of intra- and postoperative blood loss, type of osteosynthesis, complications, time of death after the last fracture, time between arrival in the hospital and operation and hospital stay for both fractures) were recorded. A total of 32 second hip fractures were identified (2%) at a mean of 27.5 (SD 28.9) months after the initial hip fracture. The mean age at the first fracture was 77.2 years (SD 11.7), and 27 of 32 patients were female. Of these 32 patients (64 bilateral hip fractures), 32 fractures were intracapsular (1 femoral neck, 31 subcapital) and 32 were extracapsular fractures (6 subtrochanteric, 26 transtrochanteric). Although 24 of the 32 patients had identical first and second hip fractures, only eight out of 32 hips were treated with the same implants. There was a significant difference in Singh index between both hips at the time of the first fracture. There was also a significant difference in Singh index between the hip which was not fractured compared with its subsequent index when it was broken. All other studied patient and fracture characteristics were not significantly different. In this population the percentage of second hip fractures was relatively low compared to other studies. The choice of implants in this study shows that implants were chosen randomly. Because there is a significant difference in the Singh index during first and second hip fracture, osteoporosis medication might help reduce the incidence of second hip fractures

    The birth of a human-specific neural gene by incomplete duplication and gene fusion

    Get PDF
    Background: Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. Results: 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. Conclusions: Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage
    • …
    corecore