112 research outputs found
A Model Approach to the Electrochemical Cell: An Inquiry Activity
In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulatelevel activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected prior knowledge relating to oxidation and reduction half-reactions. Then, the students examine the macroscopic level by constructing and using an electrochemical cell. Finally, students use the manipulative and make connections between the two levels through class discussion. The misconceptions involve the movement of electrons and ions through solution and the salt bridge, the resulting charges of the half-cells, and the charge sign given to the anode and cathode on electrochemical and electrolytic cells. Additionally, the activity covers oxidation and reduction reactions in electrochemical cells and provides practice drawing and labeling parts of an electrochemical cell. Results, pre- and post-testing and student comments, indicate that this laboratory facilitates students’ understanding of electrochemical cells
Structure-Based Optimization of a Novel Class of Aldehyde Dehydrogenase 1A (ALDH1A) Subfamily-Selective Inhibitors as Potential Adjuncts to Ovarian Cancer Chemotherapy
Aldehyde dehydrogenase (ALDH) activity is commonly used as a marker to identify cancer stem-like cells. The three ALDH1A isoforms have all been individually implicated in cancer stem-like cells and in chemoresistance; however, which isoform is preferentially expressed varies between cell lines. We sought to explore the structural determinants of ALDH1A isoform selectivity in a series of small-molecule inhibitors in support of research into the role of ALDH1A in cancer stem cells. An SAR campaign guided by a cocrystal structure of the HTS hit CM39 (7) with ALDH1A1 afforded first-in-class inhibitors of the ALDH1A subfamily with excellent selectivity over the homologous ALDH2 isoform. We also discovered the first reported modestly selective single isoform 1A2 and 1A3 inhibitors. Two compounds, 13g and 13h, depleted the CD133+ putative cancer stem cell pool, synergized with cisplatin, and achieved efficacious concentrations in vivo following IP administration. Compound 13h additionally synergized with cisplatin in a patient-derived ovarian cancer spheroid model
Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation
Continuous hydrothermal synthesis was highlighted in a recent review as an enabling technology for the production of nanoparticles. In recent years, it has been shown to be a suitable reaction medium for the synthesis of a wide range of nanomaterials. Many single and complex nanomaterials such as metals, metal oxides, doped oxides, carbonates, sulfides, hydroxides, phosphates, and metal organic frameworks can be formed using continuous hydrothermal synthesis techniques. This work presents a methodology to characterize continuous hydrothermal flow systems both experimentally and numerically, and to determine the scalability of a counter current supercritical water reactor for the large scale production (>1,000 T·year–1) of nanomaterials. Experiments were performed using a purpose-built continuous flow rig, featuring an injection loop on a metal salt feed line, which allowed the injection of a chromophoric tracer. At the system outlet, the tracer was detected using UV/Vis absorption, which could be used to measure the residence time distribution within the reactor volume. Computational fluid dynamics (CFD) calculations were also conducted using a modeled geometry to represent the experimental apparatus. The performance of the CFD model was tested against experimental data, verifying that the CFD model accurately predicted the nucleation and growth of the nanomaterials inside the reactor
- …