13 research outputs found

    The pokeweed leaf mRNA transcriptome and its regulation by jasmonic acid.

    Get PDF
    The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141

    Evaluation of a Threshold-Based Model of the Elevated-Temperature Fatique of Impact-Damaged γ-TiAl

    Get PDF
    Step-loading fatigue tests have been conducted on two γ-TiAl alloys with differing microstructures following quasi-static indentations intended to simulate assembly-related impact damage to low-pressure turbine blades. Fatigue tests were conducted at 600 °C using computer-controlled servohydraulic loading at a frequency of 20 Hz. Reasonably good agreement was achieved between the fatigue data and calculated fatigue strength based on the fatigue threshold and measured impact severity. In certain cases, the fatigue threshold model fails to completely describe the data. These discrepancies may be related to residual stresses, variations in crack-shape morphology, and small-crack effects. Residual stresses could not be directly measured, given the small size of the damage zones. However, a comparison of fatigue threshold approximations based on a through-thickness crack geometry and a corner-crack geometry suggests that these two models may represent the upper and lower bounds of the actual fatigue behavior. In addition, the behavior of small cracks was examined by modeling the stress-lifetime response of lightly damaged specimens of the duplex alloy. This effort indicates the need for small-crack fatigue threshold values when designing fatigue-critical γ-TiAl components
    corecore