2 research outputs found

    Supplementation of Labneh with Passion Fruit Peel Enhanced Survival of E. coli Nissle 1917 during Simulated Gastrointestinal Digestion and Adhesion to Caco-2 Cells

    No full text
    Passion fruit peel powder (PFPP) was used to supplement the probiotic labneh to increase the activity of Escherichia coli Nissle 1917 (EcN) during production and storage. Labneh was manufactured with PFPP (0.5% and 1%) and analyzed at 0, 7, and 15 days of cold storage for postacidification and sensory properties and viability of EcN, survival of EcN to simulated gastrointestinal tract stress, and adhesion potential of EcN to Caco-2 cells. Acidification kinetics during fermentation showed that supplementation with PFPP reduced the time needed to decrease pH and reach the maximum acidification rate. PFPP addition contributed to postacidification of labneh during storage. PFPP had a beneficial effect (p < 0.05) on counts of EcN in labneh during different storage periods. Consumer preference expectations for labneh enriched with PFPP (0.5% and 1%) were higher than those for the control. PFPP provided a significant protective action for EcN during simulated gastrointestinal transit and had a positive effect on EcN adhesion to Caco-2 cells in vitro, although this decreased during storage with labneh. Labneh supplementation with PFPP can be recommended because of the positive effect on EcN viability and the high nutritional value, which may increase the appeal of the product to consumers

    Effect of Chitosan Nanoparticles as Edible Coating on the Storability and Quality of Apricot Fruits

    No full text
    Apricots are a fragile fruit that rots quickly after harvest. Therefore, they have a short shelf-life. The purpose of this work is to determine the effect of coatings containing chitosan (CH) as well as its nanoparticles (CHNPs) as thin films on the quality and shelf-life of apricots stored at room (25 ± 3 °C) and cold (5 ± 1 °C) temperatures. The physical, chemical, and sensorial changes that occurred during storage were assessed, and the shelf-life was estimated. Transmission electron microscopy was used to examine the size and shape of the nanoparticle. The nanoparticles had a spherical shape with an average diameter of 16.4 nm. During the storage of the apricots, those treated with CHNPs showed an obvious decrease in weight loss, decay percent, total soluble solids, and lipid peroxidation, whereas total acidity, ascorbic acid, and carotenoid content were higher than those in the fruits treated with CH and the untreated fruits (control). The findings of the sensory evaluation revealed a significant difference in the overall acceptability scores between the samples treated with CHNPs and the other samples. Finally, it was found that CHNP coatings improved the qualitative features of the apricots and extended their shelf-life for up to 9 days at room temperature storage and for 30 days in cold storage
    corecore