54 research outputs found
Exposure to dietary mercury alters cognition and behavior of zebra finches
Environmental stressors can negatively affect avian cognitive abilities, potentially reducing fitness, for example by altering response to predators, display to mates, or memory of locations of food. We expand on current knowledge by investigating the effects of dietary mercury, a ubiquitous environmental pollutant and known neurotoxin, on avian cognition. Zebra finches Taeniopygia guttata were dosed for their entire lives with sub-lethal levels of mercury, at the environmentally relevant dose of 1.2 parts per million. In our first study, we compared the dosed birds with controls of the same age using tests of three cognitive abilities: spatial memory, inhibitory control, and color association. In the spatial memory assay, birds were tested on their ability to learn and remember the location of hidden food in their cage. The inhibitory control assay measured their ability to ignore visible but inaccessible food in favor of a learned behavior that provided the same reward. Finally, the color association task tested each bird\u27s ability to associate a specific color with the presence of hidden food. Dietary mercury negatively affected spatial memory ability but not inhibitory control or color association. Our second study focused on three behavioral assays not tied to a specific skill or problem-solving: activity level, neophobia, and social dominance. Zebra finches exposed to dietary mercury throughout their lives were subordinate to, and more active than, control birds. We found no evidence that mercury exposure influenced our metric of neophobia. Together, these results suggest that sub-lethal exposure to environmental mercury selectively harms neurological pathways that control different cognitive abilities, with complex effects on behavior and fitness
Curricular orientations to real-world contexts in mathematics
A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students
Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis
Background: Cerebral small vessel disease is a common cause of vascular dementia. Both discrete lacunar infarcts and more diffuse ischaemic changes, seen as confluent high signal (leukoaraiosis) on T2 weighted magnetic resonance imaging (MRI), occur. However, there is a weak correlation between T2 lesion load and cognitive impairment. Diffusion tensor MRI (DTI) is a new technique that may provide a better index of white matter damage. Objectives: To determine whether DTI measures are correlated more strongly with cognitive performance than lesion load on T2 weighted images, and whether these correlations are independent of conventional MRI parameters. Methods: 36 patients with ischaemic leukoaraiosis (leukoaraiosis plus a previous lacunar stroke) and 19 healthy volunteers underwent DTI, conventional MRI, and neuropsychological assessment. Results: On DTI, diffusivity was increased both within lesions and in normal appearing white matter. Mean diffusivity of normal appearing white matter correlated with full scale IQ (r = -0.46, p = 0.009) and tests of executive function. These correlations remained significant after controlling for age, sex, brain volume, and T1/T2 lesion volumes. No significant correlation was identified between T2 lesion load and IQ or neuropsychological scores. Of conventional measures, brain volume correlated best with cognitive function. Conclusions: Diffusion tensor measurements correlate better with cognition than conventional MRI measures. They may be useful in monitoring disease progression and as a surrogate marker for treatment trials. The findings support the role of white matter damage and disruption of white matter connections in the pathogenesis of cognitive impairment in cerebral small vessel disease
- …